An Achilles heel in cancer cells

December 08, 2008

A protein that shields tumor cells from cell death and exerts resistance to chemotherapy has an Achilles heel, a vulnerability that can be exploited to target and kill the very tumor cells it usually protects, researchers from the University of Illinois at Chicago show in a new study published in the Dec. 9 issue of Cancer Cell.

Akt is a signaling protein, called a kinase, that is hyperactive in the majority of human cancers.

"Akt is perhaps the most frequently activated oncoprotein (cancer-promoting protein) in human cancer," says Nissim Hay, professor of biochemistry and molecular genetics at the UIC College of Medicine. Pharmaceutical companies have been trying to find ways to inhibit Akt to improve cancer therapy, he said, but most candidate drugs have acted too broadly and proved toxic.

"One of Akt's major functions in tumor cells is promoting cell survival," Hay said. "Tumor cells with hyperactive Akt are not only resistant to the external stresses that can induce cell death but also to chemotherapy."

But Akt is also required for metabolism and the proliferation of cancer cells, and it was as a byproduct of its role in metabolism that the researchers were able to exploit Akt hyperactivity against the tumor cell.

"We found that cells with hyperactive Akt have increased intracellular levels of reactive oxygen species (ROS) and at the same time impaired ability to scavenge ROS," Hay said. These ROS are highly reactive byproducts of metabolism that can damage the cell. Cells usually respond to high levels of ROS by undergoing cell suicide, or apoptosis.

"And, to our surprise, we found that although Akt can protect cancer cells from many of the external signals that would ordinarily induce cell death, including many chemotherapy drugs, it cannot protect from ROS inducers," said Hay.

The researchers found that if they treated cancer cells with chemicals that raise ROS levels, the cells die. Akt could not protect cells from this form of apoptosis and, indeed, because Akt impaired the normal ROS scavenging in the cell, hyperactive Akt actually had the effect of making the cells more vulnerable to these ROS inducers. This enabled selective killing of cancer cells, expressing hyperactive Akt, and not normal cells.

The researchers also devised another strategy to exploit Akt's Achilles heel to successfully target and kill cancer cells.

An FDA-approved chemotherapy drug called rapamycin can be used to arrest cell tumor growth. A drawback of this drug is that it doesn't kill the cells, it just arrests the growth of the tumor. When the drug is removed the tumor may grow again.

"Rapamycin's other drawback is complicated feedback regulation that we turn to our advantage," Hay said. "It turns out rapamycin's target and Akt talk to each other in the cell." If the rapamycin target is hyperactive, Akt is inhibited, and if Akt is active, the rapamycin target is activated.

"So even though cancer cells treated with rapamycin stop dividing, they activate Akt, which makes the cells more resistant to other chemotherapy drugs," said Hay. "But we use that to our advantage. Because overactivation of Akt sensitizes the cells to ROS mediated cell death, if we treat the cells with ROS inducers and rapamycin together we can now kill the cells, not just arrest their growth."

The new study "provides a proof of the principle that Akt's Achilles heel -- a consequence of its role in metabolism -- can be exploited in at least these two ways to selectively target and kill cancer cells," Hay said.
-end-
The study was supported by grants from the National Institutes of Health and the American Cancer Society-Illinois. Veronique Nogueira, Youngkyo Park, Chia-Chen Chen, Pei-Zhang Xu, Mei-Ling Chen, Ivana Tonic and Terry Unterman contributed to this study.

For more information about UIC, visit www.uic.edu.

University of Illinois at Chicago

Related Cancer Articles from Brightsurf:

New blood cancer treatment works by selectively interfering with cancer cell signalling
University of Alberta scientists have identified the mechanism of action behind a new type of precision cancer drug for blood cancers that is set for human trials, according to research published in Nature Communications.

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.

Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.

Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.

More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.

New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.

American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.

Read More: Cancer News and Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.