Human umbilical stem cells cleared mice's cloudy eyes

December 08, 2009

Transplanting human stem cells from umbilical cords onto the abnormally thin, cloudy corneas of laboratory mice significantly improved corneal transparency and increased the thickness of the animals' corneal stroma, the transparent middle layer, according to research that will be presented at the American Society for Cell Biology (ASCB) 49th Annual Meeting, Dec. 5-9, 2009 in San Diego.

These research results come at a time of limited supply of donated human corneas for treating patients with severe corneal and genetic eye diseases. Human umbilical cord mesenchymal stem cells (UMSCs) transplants may prove to be an alternative to corneal transplant surgeries.

The transplanted UMSCs survived in the mouse corneal stroma for more than three months with minimal signs of graft rejection, Winston Kao, Ph.D., of the University of Cincinnati School of Medicine reported at the ASCB conference.

In contrast, human umbilical hematopoietic stem cells (HUHSCs), the stem cells that give rise to all blood cells types, rapidly vanished from the mouse corneas when they were transplanted into the animals' eyes. Unlike the UMSCs, the HUHSCs were victims of graft-host rejection.

Kao reported that histological and immune fluorescence staining showed that the transplanted UMSCs could trans-differentiate and assume the appearance of normal corneal keratocytes.

The new cells expressed critical keratocyte markers such as keratocan and aldehyde dehydrogenase as well as the adhesion protein, CD34, all with little or no graft reaction.

The animal model for these studies, a special knockout mouse, was genetically engineered to lack the gene for making lumican, a protein essential for the formation and maintenance of a transparent cornea. Knockout mice without lumican have thin and cloudy corneas.

The supply of human corneas for transplantation is under threat from an unexpected direction: laser eye surgery. Reconfiguring the refractive surface of the cornea through laser surgery unfortunately can leave the cornea unsuitable for later organ donation. About 50,000 corneal transplants are performed each year in the U.S.

Having his proof of principle in hand, Kao said that he believes that UMSC transplants as an alternative treatment for severe genetic and corneal diseases are well worth pursuing. Unlike donated corneas, the supply of human UMSCs is almost unlimited, Kao said.

UMSCs are easy to isolate from the umbilical cord, their numbers can be expanded in cell culture, and they can be stored ⎯ and quickly recovered ⎯ from liquid nitrogen when a patient is in urgent need of a clear, healthy cornea.
-end-
Kao's research team included scientists at University of California, Irvine, Bionet Incorporated, Taipei, Taiwan, as well as University of Cincinnati School of Medicine.

Winston W-Y Kao, Ph.D. (513-558-2802; Winston.Kao@UC.Edu) will present poster, "Cell Therapy of Corneal Diseases with Umbilical Mesenchymal Stem Cells" on Tuesday, Dec. 8, during the 11:00 a.m.-12:30 p.m. Poster Session 3, Program #1694, Board #B73, Exhibit Halls D-H.

American Society for Cell Biology

Related Stem Cells Articles from Brightsurf:

SUTD researchers create heart cells from stem cells using 3D printing
SUTD researchers 3D printed a micro-scaled physical device to demonstrate a new level of control in the directed differentiation of stem cells, enhancing the production of cardiomyocytes.

More selective elimination of leukemia stem cells and blood stem cells
Hematopoietic stem cells from a healthy donor can help patients suffering from acute leukemia.

Computer simulations visualize how DNA is recognized to convert cells into stem cells
Researchers of the Hubrecht Institute (KNAW - The Netherlands) and the Max Planck Institute in Münster (Germany) have revealed how an essential protein helps to activate genomic DNA during the conversion of regular adult human cells into stem cells.

First events in stem cells becoming specialized cells needed for organ development
Cell biologists at the University of Toronto shed light on the very first step stem cells go through to turn into the specialized cells that make up organs.

Surprising research result: All immature cells can develop into stem cells
New sensational study conducted at the University of Copenhagen disproves traditional knowledge of stem cell development.

The development of brain stem cells into new nerve cells and why this can lead to cancer
Stem cells are true Jacks-of-all-trades of our bodies, as they can turn into the many different cell types of all organs.

Healthy blood stem cells have as many DNA mutations as leukemic cells
Researchers from the Princess Máxima Center for Pediatric Oncology have shown that the number of mutations in healthy and leukemic blood stem cells does not differ.

New method grows brain cells from stem cells quickly and efficiently
Researchers at Lund University in Sweden have developed a faster method to generate functional brain cells, called astrocytes, from embryonic stem cells.

NUS researchers confine mature cells to turn them into stem cells
Recent research led by Professor G.V. Shivashankar of the Mechanobiology Institute at the National University of Singapore and the FIRC Institute of Molecular Oncology in Italy, has revealed that mature cells can be reprogrammed into re-deployable stem cells without direct genetic modification -- by confining them to a defined geometric space for an extended period of time.

Researchers develop a new method for turning skin cells into pluripotent stem cells
Researchers at the University of Helsinki, Finland, and Karolinska Institutet, Sweden, have for the first time succeeded in converting human skin cells into pluripotent stem cells by activating the cell's own genes.

Read More: Stem Cells News and Stem Cells Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.