NASA global precipitation measurement mission passes major review

December 08, 2009

GREENBELT, Md. - NASA's effort to deploy the first satellite mission to advance global precipitation observations from space moved closer to this goal when agency officials approved critical elements for the Global Precipitation Measurement (GPM) mission on Dec. 2.

NASA gave GPM the green light to proceed to the mission implementation phase in a review meeting chaired by NASA's Associate Administrator Christopher Scolese.

Building on the success of the Tropical Rainfall Measuring Mission (TRMM), a joint project between NASA and the Japan Aerospace Exploration Agency (JAXA), GPM will usher in a new generation of space-based observations of global precipitation, a key element of the Earth's climate and also the primary source of freshwater. GPM is an international collaboration that currently includes NASA and JAXA, with anticipated contributions from additional international partners.

"This joint NASA/JAXA mission is scientifically important and stands as a prime example of the power of international cooperation in Earth observations," said NASA's Earth Science Division director Michael Freilich. "GPM's global precipitation measurements will advance our abilities to monitor and accurately predict precipitation on a global basis. GPM builds on the strong scientific and technical collaborations developed between NASA and JAXA. GPM instruments will also provide key calibration references to allow measurements from a wide variety of other satellite missions, including those from other U.S. and international organizations, to be combined to provide accurate predictions and global data sets."

The heart of the GPM mission is a spaceborne Core Observatory that serves as a reference standard to unify and advance measurements from a constellation of multinational research and operational satellites carrying microwave sensors. GPM will provide uniformly calibrated precipitation measurements globally every 2-4 hours for scientific research and societal applications. The GPM Core Observatory sensor measurements will for the first time make quantitative observations of precipitation particle size distribution, which is key to improving the accuracy of precipitation estimates by microwave radiometers and radars.

The GPM Core Observatory will carry a Dual-frequency Precipitation Radar (DPR) and a multi-channel GPM Microwave Imager (GMI). DPR will have greater measurement sensitivity to light rain and snowfall compared to the TRMM radar. GMI uses a set of frequencies to retrieve heavy, moderate, and light precipitation from emission and scattering signals of water droplets and ice particles.

GPM is the cornerstone of the multinational Committee on Earth Observation Satellites Precipitation Constellation that addresses one of the key observations of the Global Earth Observation System of Systems.

NASA is responsible for the GPM Core Observatory spacecraft bus, the GMI carried on it, the Core Observatory integration, launch site processing, mission operation and science data processing and distribution. NASA is also responsible for the development of a second GMI to be flown on a partner-provided Low-Inclination Observatory (LIO) and the Instrument Operational Center for the LIO. The GPM Core Observatory is scheduled for launch in July 2013 from JAXA's Tanegashima launch site on an H-IIA rocket.

NASA's Goddard Space Flight Center in Greenbelt, Md., manages the GPM mission on behalf of the Earth Science Division of the Science Mission Directorate at NASA Headquarters. Goddard oversees the in-house Core Observatory development and the GMI acquisition from Ball Aerospace & Technologies Corporation of Boulder, Colo. The GPM project life cycle cost is $978 million.
-end-


NASA/Goddard Space Flight Center

Related Earth Articles from Brightsurf:

The craters on Earth
A two-volume atlas presents and explains the impact sites of meteorites and asteroids worldwide

A new way of looking at the Earth's interior
Current understanding is that the chemical composition of the Earth's mantle is relatively homogeneous.

Some planets may be better for life than Earth
Researchers have identified two dozen planets outside our solar system that may have conditions more suitable for life than our own.

Earth may always have been wet
The Earth is the only planet known to have liquid water on its surface, a fundamental characteristic when it comes to explaining the emergence of life.

Probing materials at deep-Earth conditions to decipher Earth's evolutionary tale
Scientists have developed a way to study liquid silicates at the extreme conditions found in the core-mantle boundary.

What is the origin of water on Earth?
Led by Cédric Gillmann -- Université libre de Bruxelles, ULB, funded by the EoS project ET-HoME, a team of researchers demonstrate that the water we are now enjoying on Earth has been there since its formation.

How and when was carbon distributed in the Earth?
A magma ocean existing during the core formation is thought to have been highly depleted in carbon due to its high-siderophile (iron loving) behavior.

Deep-earth diamonds reveal primordial rock source in Earth's mantle
An analysis of helium isotopes locked inside 'super-deep' diamonds hundreds of kilometers below Earth's surface suggests that vast reservoirs of molten primordial source rock, perhaps nearly as old as the Earth, are present.

Why is the Earth's F/Cl ratio not chondritic?
It is generally believed that terrestrial planets were made from chondrites.

Building blocks of the Earth
Geologists from the Universities of Cologne and Bonn gain new insights regarding the Earth's composition by analysing meteorites.

Read More: Earth News and Earth Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.