Unlocking the secrets of our compulsions

December 08, 2010

ANN ARBOR, Mich.-- Researchers have shed new light on dopamine's role in the brain's reward system, which could provide insight into impulse control problems associated with addiction and a number of psychiatric disorders.

A joint study by the University of Michigan and University of Washington found that, contrary to the prevailing conception, differences in individuals' styles of response to environmental cues can fundamentally influence chemical reward patterns in the brain.

Deeper understanding of these differences between individuals may lead to new preventive tools or treatments for compulsive behavior.

"We were able to answer the longstanding question, 'What role does dopamine play in reward learning?'," says the study's co-lead author Shelly B. Flagel, Ph.D., a research investigator at the U-M Medical School's Molecular and Behavioral Neuroscience Institute.

The findings were published online today in the journal Nature ahead of print publication.

To understand what the research uncovered, picture the classic experiment in which a rat learns to associate a lever with a getting a food reward. (In this case, the rats didn't actually have to press the lever to get the food; the researchers were testing its power as a signal of the food's appearance.)

What scientists hadn't yet figured out was the extent to which the dopamine released by the rat's brain was related to the lever's ability to accurately predict the appearance of food, or whether it made the lever desirable in its own right.

The answer, the researchers found, is that it depends on what kind of rat you are.

Think of it this way, Flagel says: Some people will see a sign for an ice cream shop and for them it's simply that, an indicator that ice cream is available nearby. But other people will have a stronger reaction to the sign - the tantalizing association between the sign and ice cream is so powerful, they can already taste the treat and often hurry to buy some.

The researchers studied rats that had been selectively bred for certain behavioral traits, including different proclivities for addictive drugs. Rats in the drug-prone group tended to focus their attention on the lever. The other group cared a lot more about the place where the food actually appeared.

Still, if the rats' brains saw the lever merely as a signal that accurately predicted the arrival of the food, the dopamine reward for both groups should be the same.

However, if the dopamine reward was tied to the strength of the rats' desire for lever itself, one would expect a different pattern for each of the two groups.

And that's exactly what happened.

U-M's collaborators at the University of Washington used a technique called fast-scan cyclic voltammetry to measure the dopamine responses in the rats' brains as they shifted over mere fractions of a second. Their analysis showed that the drug-prone rats got a jolt of happiness just from the lever, while the food-oriented rats did not.

And their desire for the lever continued, even when the food reward was removed.

The study additionally measured the rats' ability to learn when dopamine was blocked and repeated the experiments with rats that had not been selectively bred.

Flagel, co-lead author Jeremy J. Clark, Ph.D., of UW, and their colleagues hope the animal model will help scientists figure out why some people are more strongly motivated by environmental cues and therefore at increased risk for compulsive behavior -- or, among addicts, relapse.

"We have been interested in understanding how differences in temperament control our day-to-day behavior, how they determine the types of pathologies we express," says Huda Akil, Ph.D., co-director of MBNI, a professor of neuroscience at U-M and co-senior author of the study. "This study helps us understand how, in some situations, dopamine amplifies messages in the world around us, playing a role in controlling behaviors."

Meanwhile, Paul E.M. Phillips, Ph.D., Akil's counterpart at UW, emphasized the collaboration, "Collectively the contributions of our groups amounted to something much more important than the sum of the components."
-end-
Funding: National Institutes of Health, Office of Naval Research

Citation: 10.1038/nature09588

Additional U-M Authors:

Terry E. Robinson, Ph.D.; Leah Mayo, B.S.; Alayna Czuj, B.S.; Sarah Clinton, Ph.D.

Additional UW Authors:

Ingo Willuhn, Ph.D.; Christina A. Akers, B.S., Paul E.M. Phillips, Ph.D.

Resources:U-M Molecular and Behavioral Neuroscience Institute, mbni.med.umich.edu

University of Michigan Health System

Related Dopamine Articles from Brightsurf:

Dopamine surge reveals how even for mice, 'there's no place like home'
''There's no place like home,'' has its roots deep in the brain.

New dopamine sensors could help unlock the mysteries of brain chemistry
In 2018, Tian Lab at UC Davis Health developed dLight1, a single fluorescent protein-based biosensor.

Highly sensitive dopamine detector uses 2D materials
A supersensitive dopamine detector can help in the early diagnosis of several disorders that result in too much or too little dopamine, according to a group led by Penn State and including Rensselaer Polytechnic Institute and universities in China and Japan.

Dopamine neurons mull over your options
Researchers at the University of Tsukuba have found that dopamine neurons in the brain can represent the decision-making process when making economic choices.

Viewing dopamine receptors in their native habitat
A new study led by UT Southwestern researchers reveals the structure of the active form of one type of dopamine receptor, known as D2, embedded in a phospholipid membrane.

Significant differences exist among neurons expressing dopamine receptors
An international collaboration, which included the involvement of the research team from the Institut de Neurociències of the UAB (INC-UAB), has shown that neurons expressing dopamine D2 receptors have different molecular features and functions, depending on their anatomical localization within the striatum.

How dopamine drives brain activity
Using a specialized magnetic resonance imaging (MRI) sensor that can track dopamine levels, MIT neuroscientists have discovered how dopamine released deep within the brain influences distant brain regions.

Novelty speeds up learning thanks to dopamine activation
Brain scientists led by Sebastian Haesler (NERF, empowered by IMEC, KU Leuven and VIB) have identified a causal mechanism of how novel stimuli promote learning.

Evidence in mice that childhood asthma is influenced by the neurotransmitter dopamine
Neurons that produce the neurotransmitter dopamine communicate with T cells to enhance allergic inflammation in the lungs of young mice but not older mice, researchers report Nov.

Chronic adversity dampens dopamine production
People exposed to a lifetime of psychosocial adversity may have an impaired ability to produce the dopamine levels needed for coping with acutely stressful situations.

Read More: Dopamine News and Dopamine Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.