Breaking oncogene's hold on cancer cell provides new treatment direction

December 08, 2011

HOUSTON -- (Dec. 8, 2011) - Just as people's bodies and minds can become addicted to substances such as drugs, caffeine, alcohol, their cancers can become addicted to certain genes that insure their continued growth and dominance.

Researchers at Baylor College of Medicine and Harvard Medical School have developed ways to exploit the addictions of cancers to kill them without harming normal tissues. A report on their work appears online today in the journal Science.

Many cancers are driven by the overexpression of oncogenes. These oncogenes are two-faced. On one hand, they promote processes that allow the cells to become immortal and to grow unchecked. On the other hand, the expression of these oncogenes creates additional anti-growth cellular stresses, conflicts that the cancer cell must subvert in order to survive. One classical example of an oncogene that creates such a delicate balance is c-myc. In patients, hyper-activation of c-myc is associated with the most aggressive cancer types, with 20-40 percent of all cancers having an activated myc gene.

"For 30 years, scientists have tried to attack the oncogene myc," said Dr. Thomas Westbrook, assistant professor of molecular and human genetics and biochemistry and molecular biology at BCM and a senior author of the report. "However, it has not been amenable to the drugs we have. Now we have to take advantage of the stresses the oncogene puts on the cancer cell and determine if we can ramp those up to kill the tumor."

"Tumor cells experience considerable mitotic stress," said Westbrook. Regular chemotherapy take advantage of this, but the drugs kill dividing cancer and normal cells. Experts think that special programs within the cancer cell allow it to cope with the stress as it grows and divides (mitosis).

"The fundamental question we asked was how are the stresses in cancer cells different from those in normal cells?" said Westbrook. "We want to exploit that idea and see if we can exacerbate that stress.

To identify genes involved in coping with this stress, Westbrook and his colleague Dr. Stephen Elledge of Harvard Medical School used a special RNA interference screen to disrupt the function of each gene in the genome and identify the genes required to allow the cancer cell to tolerate the stress of the myc oncogene.

One of the core biochemical processes they uncovered was SUMOylation, a three-step process. Westbrook, Elledge, and colleagues showed that SUMO-activating enzyme, the first step in the process, is required for myc-driven cancers to go through cell division. Thus, inhibiting SAE could be a therapeutic strategy for myc-cancers.

To test this, they turned off the SAE enzyme in a form of myc-driven breast cancer.

"The tumors stopped growing and many of them melted away," said Westbrook. Today, many of the mice are still alive and healthy. If they did not turn off production of the enzyme, the tumors grew and eventually killed the animals.

"If you inhibit this enzyme in a non-myc driven breast cancer, nothing happens," said Westbrook. "If you inhibit it in normal cells of many kinds, nothing happens."

That means that turning off SAE2 exacerbates the stress on cancer cells but not normal cells and thus be a great way to kill cancers without many of the side effects of traditional chemotherapies.

The findings in this report have particular importance for an aggressive form of breast cancer called triple negative breast cancer (TNBC). This subtype is often driven by myc, and there are currently no effective treatments for these patients.

"This may provide that target," said Westbrook. The therapeutic value is that a drug targeting SAE will cause the cancer cell to no longer tolerate myc but will not be detrimental to normal cells.

In addition, myc drives many others kinds of cancers and he anticipates that inhibiting this enzyme in these tumors may have the same effect.
-end-
Others who took part in this work include Jessica D. Kessler, Tingting Sun, Kristen L. Meerbrey, Earlene M. Schmitt, Samuel O. Skinner, Mitchell Rao, Peng Yu, Rocio Dominguez-Vidana, Ronald J. Bernardi, Tiffany Hsu, Ido Golding, C. Kent Osborne, Chad J. Creighton, Susan G. Hilsenbeck, Rachel Schiff, Chad A. Shaw, all of BCM; ,Kristopher T. Kahle, Michael R. Schlabach, Qikai Xu, Mamie Z. Li, Anthony C. Liang and Nicole L. Solimini, all of Harvard and Brigham and Women's Hospital; Bing Yu and Ji Luo, both of the National Cancer Institute and Zachary C. Hartman of the University of Texas MD Anderson Cancer Center.

Funding for this work came from the National Institutes of Health, the U.S. Department of Defense, the Human Frontier Science Program, the Welch Foundation, the National Science Foundation, the Susan G. Komen for the Cure, the National Cancer Institute, the U.S. Army Innovator Award, the Howard Hughes Medical Institute, the V Foundation for Cancer Research and the Mary Kay Ash Foundation for Cancer Research.

For more information on basic science research at Baylor College of Medicine, please for to From the Lab at Baylor College of Medicine

Baylor College of Medicine

Related Cancer Cells Articles from Brightsurf:

Cancer researchers train white blood cells to attacks tumor cells
Scientists at the National Center for Tumor Diseases Dresden (NCT/UCC) and Dresden University Medicine, together with an international team of researchers, were able to demonstrate that certain white blood cells, so-called neutrophil granulocytes, can potentially - after completing a special training program -- be utilized for the treatment of tumors.

New way to target some rapidly dividing cancer cells, leaving healthy cells unharmed
Scientists at Johns Hopkins Medicine and the University of Oxford say they have found a new way to kill some multiplying human breast cancer cells by selectively attacking the core of their cell division machinery.

Breast cancer cells use message-carrying vesicles to send oncogenic stimuli to normal cells
According to a Wistar study, breast cancer cells starved for oxygen send out messages that induce oncogenic changes in surrounding normal epithelial cells.

Breast cancer cells turn killer immune cells into allies
Researchers at Johns Hopkins University School of Medicine have discovered that breast cancer cells can alter the function of immune cells known as Natural killer (NK) cells so that instead of killing the cancer cells, they facilitate their spread to other parts of the body.

Breast cancer cells can reprogram immune cells to assist in metastasis
Johns Hopkins Kimmel Cancer Center investigators report they have uncovered a new mechanism by which invasive breast cancer cells evade the immune system to metastasize, or spread, to other areas of the body.

Engineered immune cells recognize, attack human and mouse solid-tumor cancer cells
CAR-T therapy has been used successfully in patients with blood cancers such as lymphoma and leukemia.

Drug that keeps surface receptors on cancer cells makes them more visible to immune cells
A drug that is already clinically available for the treatment of nausea and psychosis, called prochlorperazine (PCZ), inhibits the internalization of receptors on the surface of tumor cells, thereby increasing the ability of anticancer antibodies to bind to the receptors and mount more effective immune responses.

Engineered bone marrow cells slow growth of prostate and pancreatic cancer cells
In experiments with mice, researchers at the Johns Hopkins Kimmel Cancer Center say they have slowed the growth of transplanted human prostate and pancreatic cancer cells by introducing bone marrow cells with a specific gene deletion to induce a novel immune response.

First phase i clinical trial of CRISPR-edited cells for cancer shows cells safe and durable
Following the first US test of CRISPR gene editing in patients with advanced cancer, researchers report these patients experienced no negative side effects and that the engineered T cells persisted in their bodies -- for months.

Zika virus' key into brain cells ID'd, leveraged to block infection and kill cancer cells
Two different UC San Diego research teams identified the same molecule -- αvβ5 integrin -- as Zika virus' key to brain cell entry.

Read More: Cancer Cells News and Cancer Cells Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.