Researchers link patterns seen in spider silk, melodies

December 08, 2011

Using a new mathematical methodology, researchers at MIT have created a scientifically rigorous analogy that shows the similarities between the physical structure of spider silk and the sonic structure of a melody, proving that the structure of each relates to its function in an equivalent way.

The step-by-step comparison begins with the primary building blocks of each item -- an amino acid and a sound wave -- and moves up to the level of a beta sheet nanocomposite (the secondary structure of a protein consisting of repeated hierarchical patterns of protein assemblages) and a musical riff (a repeated pattern of notes or chords). The study explains that structural patterns are directly related to the functional properties of lightweight strength in the spider silk and, in the riff, sonic tension that creates an emotional response in the listener.

While the comparison of spider silk and musical composition may appear to be more novelty than breakthrough, the methodology behind it represents a new approach to the comparison of research findings in disparate scientific fields. Such analogies could help engineers develop materials that make use of the repeating patterns of simple building blocks found in many biological materials that, like spider silk, are lightweight yet extremely failure-resistant. The work also suggests that engineers may be able to gain new insights into biological systems through the study of the structure-function relationships found in music and other art forms.

The MIT researchers -- David Spivak, a postdoctoral associate in the Department of Mathematics, Associate Professor Markus Buehler of the Department of Civil and Environmental Engineering (CEE) and CEE graduate student Tristan Giesa -- published their findings in the December issue of BioNanoScience.

They created the analogy using ontology logs, or "ologs," a concept introduced about a year ago by Spivak, who specializes in a branch of mathematics called category theory. Ologs provide an abstract means for categorizing the general properties of a system -- be it a material, mathematical concept or phenomenon -- and showing inherent relationships between function and structure.

To build the ologs, the researchers used information from Buehler's previous studies of the nanostructure of spider silk and other biological materials.

"There is mounting evidence that similar patterns of material features at the nanoscale, such as clusters of hydrogen bonds or hierarchical structures, govern the behavior of materials in the natural environment, yet we couldn't mathematically show the analogy between different materials," Buehler says. "The olog lets us compile information about how materials function in a mathematically rigorous way and identify those patterns that are universal to a very broad class of materials. Its potential for engineering the built environment -- in the design of new materials, structures or infrastructure -- is immense."

At first glance, an olog may look deceptively simple, much like a corporate organizational chart that shows reporting relationships using directional arrows. But ologs demand scientific rigor to break a system down into its most basic structural building blocks, define the functional properties of the building blocks themselves with respect to one another, show how function emerges through the building blocks' interactions, and do this in a self-consistent manner. With this structure, two or more systems can be formally compared.

"The fact that a spider's thread is robust enough to avoid catastrophic failure even when a defect is present can be explained by the very distinct material makeup of spider silk fibers," Giesa says. "It's exciting to see that music theoreticians observed the same phenomenon in their field, probably without any knowledge of the concept of damage tolerance in materials. Deleting single chords from a harmonic sequence often has only a minor effect on the harmonic quality of the whole sequence."

"The seemingly incredible gap between spider silk and music is no wider than the gap between the two disparate mathematical fields of geometry -- think of triangles and spheres -- and algebra, which uses variables and equations," Spivak says. "Yet category theory's first success -- in the 1940s -- was to express a rigorous mathematical analogy between these two domains and to use it to prove new theorems about complex geometric shapes by importing existing theorems from algebra. It remains to be seen whether our olog will yield such striking results; however, the foundation for such an inquiry is now in place."
-end-


Massachusetts Institute of Technology, Department of Civil and Environmental Engineering

Related Spider Silk Articles from Brightsurf:

Silk road contains genomic resources for improving apples
The fabled Silk Road is responsible for one of our favorite and most valuable fruits: the domesticated apple.

Tapping secrets of Aussie spider's unique silk
The basket-web spider, which is found only in Australia, has revealed it not only weaves a unique lobster pot web but that its silk has elasticity and a gluing substance, that creates a high degree of robustness.

Silk offers homemade solution for COVID-19 prevention
A University of Cincinnati biology study found that silk fabric performs similarly to surgical masks when used in conjunction with respirators but has the added advantages of being washable and repelling water, which would translate to helping to keep a person safer from the airborne virus.

A new species of spider
During a research stay in the highlands of Colombia conducted as part of her doctorate, Charlotte Hopfe, PhD student at the University of Bayreuth, has discovered and zoologically described a new species of spider.

Preventing infection, facilitating healing: New biomaterials from spider silk
New biomaterials developed at the University of Bayreuth eliminate risk of infection and facilitate healing processes.

Mixing silk with polymers could lead to better biomedical implants
Spun by spiders and silkworms, silk has mystified human engineers who have yet to figure out how to artificially recreate it.

Spider silk inspires new class of functional synthetic polymers
Synthetic polymers have changed the world around us. However, It is hard to finely tune some of their properties, such as the ability to transport ions.

The earliest cat on the Northern Silk Road
Dr. Irina Arzhantseva and Professor Heinrich Haerke from the Centre for Classical and Oriental Archaeology (IKVIA, Faculty of Humanities, HSE University) have been involved in the discovery of the earliest domestic cat yet found in northern Eurasia.

Spider silk made by photosynthetic bacteria
A research team in Japan reported that they succeeded in producing the spider silk -- ultra-lightweight, though, biodegradable and biocompatible material -- using photosynthetic bacteria.

Spider silk can create lenses useful for biological imaging
Spider silk is useful for a variety of biomedical applications: It exhibits mechanical properties superior to synthetic fibers for tissue engineering, and it is not toxic or harmful to living cells.

Read More: Spider Silk News and Spider Silk Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.