NASA-funded FOXSI to observe X-rays from Sun

December 08, 2014

An enormous spectrum of light streams from the sun. We're most familiar with the conventional visible white light we see with our eyes from Earth, but that's just a fraction of what our closest star emits. NASA regularly watches the sun in numerous wavelengths because different wavelengths provide information about different temperatures and processes in space. Looking at all the wavelengths together helps to provide a complete picture of what's occurring on the sun over 92 million miles away - but no one has been able to focus on high energy X-rays from the sun until recently.

In early December 2014, the Focusing Optics X-ray Solar Imager, or FOXSI, mission will launch aboard a sounding rocket for a 15-minute flight with very sensitive hard X-ray optics to observe the sun. This is FOXSI's second flight - now with new and improved optics and detectors. FOXSI launched previously in November 2012. The mission is led by Säm Krucker of the University of California in Berkeley.

Due to launch from White Sands Missile Range in New Mexico, on Dec. 9, 2014, FOXSI will be able to collect six minutes worth of data during the 15-minute flight. Sounding rockets provide a short trip for a relatively low price - yet allow scientists to gather robust data on various things, such as X-ray emission, which cannot be seen from the ground as they are blocked by Earth's atmosphere.

"Hard X-rays are a signature of particles accelerating on the sun," said Steven Christe, the project scientist for FOXSI at NASA's Goddard Space Flight Center in Greenbelt, Maryland. "The sun accelerates particles when it releases magnetic energy. The biggest events like solar flares release giant bursts of energy and send particles flying, sometimes directed towards the Earth. But the sun is actually releasing energy all the time and that process is not well-understood."

Scientists want to understand these energy releases both because they contribute to immense explosions on the sun that can send particles and energy toward Earth, but also because that energy helps heat up the sun's atmosphere to temperatures of millions of degrees -- 1,000 times hotter than the surface of the sun itself. Observing many wavelengths of light allows us to probe different temperatures within the sun's atmosphere. Looking for hard X-rays, is not only one of the best ways to measure the highest temperatures, up to tens of millions of degrees, but it also helps track accelerated particles.

The sensitivity of the FOXSI instrument means the team can investigate very faint events on the sun, including tiny energy releases commonly known as nanoflares. Nanoflares are thought to occur constantly, but are so small that we can't see them with current telescopes. Spotting hard X-rays with FOXSI would be a confirmation that these small flares do exist. Moreover, it would suggest that nanoflares behave in a similar fashion as larger flares, accelerating particles in much the same way that big flares do.

"It's not necessarily true that these small flares accelerate particles. Perhaps they are just small heating events and the physics is different," said Christe. "That's one of the things we're trying to figure out."

Viewing such faint events requires extra sensitive optics. FOXSI carries something called grazing-incidence optics -- built by NASA's Marshall Space Flight Center in Huntsville, Alabama -- that are unlike any previous ones launched into space for solar observations. Techniques to collect and observe high energy X-rays streaming from the sun have been hampered by the fact that these wavelengths cannot be focused with conventional lenses the way visible light can be. When X-rays encounter most materials, including a standard glass lens, they usually pass right through or are absorbed. Such lenses can't, therefore, be used to adjust the X-ray's path and focus the incoming beams. So X-ray telescopes have previously relied on imaging techniques that don't use focusing. This is effective when looking at a single bright event on the sun, such as the large burst of X-rays from a solar flare, but it doesn't work as well when searching for many faint events simultaneously.

The FOXSI instrument makes use of mirrors that can successfully cause x-rays to reflect -- as long as the x-ray mirrors are nearly parallel to the incoming X-rays. Several of these mirrors in combination help collect the X-ray light before funneling it to the detector. This focusing makes faint events appear brighter and crisper.

The FOXSI launch is scheduled for Dec. 9 between 2 and 3 pm EST. The shutter door on the optics system opens up after the payload reaches an altitude of 90 miles, one minute after launch. FOXSI then begins six minutes of observing the sun. After the observations, the door on the optics system closes. The rocket deploys a parachute and the instruments float down to the ground in the hopes of being used again.

The FOXSI mission made it through this process successfully once before, when it flew in 2012. On its first flight, the telescope successfully viewed a flare in progress. On this second flight, the team has updated some of the optics to be more sensitive and has removed insulation blankets that blocked some of the X-rays during the last flight. They also upgraded some of the detectors with new detectors built by the Japanese Aerospace Exploration Agency using a new detector material. Last time they used silicon and this time they are using cadmium telluride.

Such refurbishing illustrates a key value of sounding rockets: Making adjustments to the instruments on relatively low-cost flights has great benefit for future missions. By testing FOXSI on a sounding rocket, it can be perfected to use on a larger satellite with even larger, more sensitive optics.

In addition to developing technology, these low-cost missions help train students and young scientists.

"Sounding rockets are a great way for students to be heavily involved in every aspect of a space mission, from electronics testing to observational planning," said Lindsay Glesener, FOXSI's project manager at the University of California in Berkeley, who was also a graduate student during FOXSI's first flight. "Development on low-cost missions is the way that,scientists, engineers, and even the telescopes get prepared to work on an eventual satellite mission."
FOXSI is a collaboration between the United States and the Japanese Aerospace Exploration Agency. FOXSI is supported through NASA's Sounding Rocket Program at the Goddard Space Flight Center's Wallops Flight Facility in Virginia. NASA's Heliophysics Division manages the sounding rocket program.

NASA/Goddard Space Flight Center

Related Energy Articles from Brightsurf:

Energy System 2050: solutions for the energy transition
To contribute to global climate protection, Germany has to rapidly and comprehensively minimize the use of fossil energy sources and to transform the energy system accordingly.

Cellular energy audit reveals energy producers and consumers
Researchers at Gladstone Institutes have performed a massive and detailed cellular energy audit; they analyzed every gene in the human genome to identify those that drive energy production or energy consumption.

First measurement of electron energy distributions, could enable sustainable energy technologies
To answer a question crucial to technologies such as energy conversion, a team of researchers at the University of Michigan, Purdue University and the University of Liverpool in the UK have figured out a way to measure how many 'hot charge carriers' -- for example, electrons with extra energy -- are present in a metal nanostructure.

Mandatory building energy audits alone do not overcome barriers to energy efficiency
A pioneering law may be insufficient to incentivize significant energy use reductions in residential and office buildings, a new study finds.

Scientists: Estonia has the most energy efficient new nearly zero energy buildings
A recent study carried out by an international group of building scientists showed that Estonia is among the countries with the most energy efficient buildings in Europe.

Mapping the energy transport mechanism of chalcogenide perovskite for solar energy use
Researchers from Lehigh University have, for the first time, revealed first-hand knowledge about the fundamental energy carrier properties of chalcogenide perovskite CaZrSe3, important for potential solar energy use.

Harvesting energy from walking human body Lightweight smart materials-based energy harvester develop
A research team led by Professor Wei-Hsin Liao from the Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong (CUHK) has developed a lightweight smart materials-based energy harvester for scavenging energy from human motion, generating inexhaustible and sustainable power supply just from walking.

How much energy do we really need?
Two fundamental goals of humanity are to eradicate poverty and reduce climate change, and it is critical that the world knows whether achieving these goals will involve trade-offs.

New discipline proposed: Macro-energy systems -- the science of the energy transition
In a perspective published in Joule on Aug. 14, a group of researchers led by Stanford University propose a new academic discipline, 'macro-energy systems,' as the science of the energy transition.

How much energy storage costs must fall to reach renewable energy's full potential
The cost of energy storage will be critical in determining how much renewable energy can contribute to the decarbonization of electricity.

Read More: Energy News and Energy Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to