Macrophages chase neutrophils away from wounds to resolve inflammation

December 08, 2014

Macrophages are best known for their Pac Man-like ability to gobble up cellular debris and pathogens in order to thwart infection. A new study in The Journal of Cell Biology describes how these immune cells also help resolve inflammation by inducing white blood cells called neutrophils to leave wounded tissue.

Neutrophils are "first responders" that are attracted to wounds by signaling molecules called reactive oxygen species (ROS) that activate a protein kinase. When neutrophils finish their work, inflammation is partly resolved through apoptosis, or cell suicide, and the subsequent engulfment of the neutrophils' remains by macrophages. But neutrophils can also elect to leave wounded tissue in a process known as reverse migration. Whether macrophages promote this mode of inflammation resolution is unclear.

Taking advantage of transparent zebrafish larvae, Anna Huttenlocher and colleagues from the University of Wisconsin-Madison found that neutrophils were generally recruited to wounds before macrophages, but, once they arrived, macrophages often contacted neutrophils and appeared to shepherd them away from the damaged tissue. Neutrophils remained in wounds for longer times in zebrafish larvae lacking macrophages, the researchers discovered. Like neutrophils, macrophages were attracted to wounds by ROS and protein kinase signaling, and macrophages lacking the ROS-generating enzyme Nox2 were unable to migrate into wounds and induce the departure of neutrophils.

Interestingly, patients lacking the human equivalent of Nox2 suffer from recurring infections and exaggerated inflammation, a disorder known as chronic granulomatous disease. This new study suggests that one cause of the patients' symptoms may be the inability of macrophages to migrate to sites of inflammation to induce neutrophil reverse migration and inflammation resolution.
-end-
Tauzin, S., et al. 2014. J. Cell Biol. doi:10.1083/jcb.201408090

About The Journal of Cell Biology

The Journal of Cell Biology (JCB) is published by The Rockefeller University Press. All editorial decisions on manuscripts submitted are made by active scientists in conjunction with our in-house scientific editors. JCB content is posted to PubMed Central, where it is available to the public for free six months after publication. Authors retain copyright of their published works, and third parties may reuse the content for non-commercial purposes under a creative commons license. For more information, please visit http://www.jcb.org.

Research reported in the press release was supported by the American Heart Association and National Institutes of Health.

Rockefeller University Press

Related Immune Cells Articles from Brightsurf:

Gut immune cells may help send MS into remission
An international research team led by UCSF scientists has shown, for the first time, that gut immune cells travel to the brain during multiple sclerosis (MS) flare-ups in patients.

Immune cells sculpt circuits in the brain
Brain immune cells, called microglia, protect the brain from infection and inflammation.

How tumor cells evade the immune defense
Scientists are increasingly trying to use the body's own immune system to fight cancer.

Breast cancer cells can reprogram immune cells to assist in metastasis
Johns Hopkins Kimmel Cancer Center investigators report they have uncovered a new mechanism by which invasive breast cancer cells evade the immune system to metastasize, or spread, to other areas of the body.

Breast cancer cells turn killer immune cells into allies
Researchers at Johns Hopkins University School of Medicine have discovered that breast cancer cells can alter the function of immune cells known as Natural killer (NK) cells so that instead of killing the cancer cells, they facilitate their spread to other parts of the body.

Engineered immune cells recognize, attack human and mouse solid-tumor cancer cells
CAR-T therapy has been used successfully in patients with blood cancers such as lymphoma and leukemia.

Mapping immune cells in brain tumors
It is not always possible to completely remove malignant brain tumors by surgery so that further treatment is necessary.

Nutrient deficiency in tumor cells attracts cells that suppress the immune system
A study led by IDIBELL researchers and published this week in the American journal PNAS shows that, by depriving tumor cells of glucose, they release a large number of signaling molecules.

Experience matters for immune cells
The discovery that immune T cells have a spectrum of responsiveness could shed light on how our immune system responds to infections and cancer, and what goes wrong in immune diseases.

Immune cells against Alzheimer's?
German researchers have developed a novel, experimental approach against Alzheimer's.

Read More: Immune Cells News and Immune Cells Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.