Study finds early warning signals of abrupt climate change

December 08, 2014

A new study by researchers at the University of Exeter has found early warning signals of a reorganisation of the Atlantic oceans' circulation which could have a profound impact on the global climate system.

The research, published today in the journal Nature Communications, used a simulation from a highly complex model to analyse the Atlantic Meridional Overturning Circulation (AMOC), an important component of the Earth's climate system.

It showed that early warning signals are present up to 250 years before it collapses, suggesting that scientists could monitor the real world overturning circulation for the same signals.

The AMOC is like a conveyor belt in the ocean, driven by the salinity and temperature of the water. The system transports heat energy from the tropics and Southern Hemisphere to the North Atlantic, where it is transferred to the atmosphere.

Experiments suggest that if the AMOC is 'switched off' by extra freshwater entering the North Atlantic, surface air temperature in the North Atlantic region would cool by around 1-3°C, with enhanced cooling of up to 8°C in the worst affected regions.

The collapse would also encourage drought in the Sahel - the area just south of the Sahara desert - and dynamic changes in sea level of up to 80cm along the coasts of Europe and North America.

"We found that natural fluctuations in the circulation were getting longer-lived as the collapse was approached, a phenomenon known as critical slowing down," said lead author Chris Boulton.

"We don't know how close we are to a collapse of the circulation, but a real world early warning could help us prevent it, or at least prepare for the consequences" adds co-author Professor Tim Lenton.

The study is the most realistic simulation of the climate system in which this type of early warning signal has been tested.

"The best early warning signals in the model world are in places where major efforts are going into monitoring the circulation in the real world - so these efforts could have unexpected added value' adds Professor Lenton.
-end-
'Early warning signals of Atlantic Meridional Overturning Circulation collapse in a fully coupled climate model' by Chris Boulton, Lesley Allison and Timothy Lenton is published today in the journal Nature Communications.

University of Exeter

Related Sea Level Articles from Brightsurf:

Sea-level rise will have complex consequences
Rising sea levels will affect coasts and human societies in complex and unpredictable ways, according to a new study that examined 12,000 years in which a large island became a cluster of smaller ones.

From sea to shining sea: new survey reveals state-level opinions on climate change
A new report analyzing state-level opinions on climate change finds the majority of Americans believe in and want action on climate change--but factors like state politics and local climate play important roles.

UM researcher proposes sea-level rise global observing system
University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science researcher Shane Elipot proposes a new approach to monitoring global sea-level rise.

How much will polar ice sheets add to sea level rise?
Over 99% of terrestrial ice is bound up in the ice sheets covering Antarctic and Greenland.

Larger variability in sea level expected as Earth warms
A team of researchers from the University of Hawai'i (UH) at Mānoa School of Ocean and Earth Science and Technology (SOEST) identified a global tendency for future sea levels to become more variable as oceans warm this century due to increasing greenhouse gas emissions.

Sea-level rise could make rivers more likely to jump course
A new study shows that sea level rise will cause rivers to change course more frequently.

UCF study: Sea level rise impacts to Canaveral sea turtle nests will be substantial
The study examined loggerhead and green sea turtle nests to predict beach habitat loss at four national seashores by the year 2100.

Wetlands will keep up with sea level rise to offset climate change
Sediment accrual rates in coastal wetlands will outpace sea level rise, enabling wetlands to increase their capacity to sequester carbon, a study from the Marine Biological Laboratory, Woods Hole, shows.

How sea level rise affects birds in coastal forests
Saltwater intrusion changes coastal vegetation that provides bird habitat. Researchers found that the transition from forests to marshes along the North Carolina coast due to climate change could benefit some bird species of concern for conservation.

As sea level rises, wetlands crank up their carbon storage
Some wetlands perform better under pressure. A new Nature study revealed that when faced with sea-level rise, coastal wetlands respond by burying even more carbon in their soils.

Read More: Sea Level News and Sea Level Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.