Nav: Home

IBS reports a high performance nanoparticle electrocatalyst

December 08, 2015

Scientists operating out of IBS' Center for Nanoparticle Research have reported highly durable and active intermetallic platinum-iron (PtFe) nanoparticles (NPs) coated with nitrogen (N) doped carbon shell. Precision sized face centered tetragonal (fct) PtFe NPs, only a few nanometers thick, are formed by thermal annealing at 700oC, resulting in a carbon outer layer which protects the NPs from detachment and dissolution throughout the harsh fuel cell operating conditions. The N-doped carbon shell not only prevents the amalgamation of the NPs during a thermal annealing process to keep their sizes as small as 6.5 nm but also protects them under the harsh operating condition.

Nanoparticles are microscopic particles between 1 and 100 nanometers (nm) in size. To put that into perspective, the greatest particle size that can pass through a surgical mask is 100 nm. In 1959, physicist Richard Feynman proposed that one day humankind could create machines composed of several individually manipulated molecules or atoms, and these machines could be constructed by tools that were only slightly larger -- an inventive and, for the time, perplexing thought.

Rejuvenated Nano Research

Now, some 40 years later, nanoparticle research has seen something of a renaissance and is an area of intense scientific research, due to a wide variety of potential applications in biomedical, optical, and electronic fields. Published reports have increased exponentially since 2000 and there's little evidence to assume this trend will cease.

Demand for a practical synthetic approach to the high performance electrocatalyst is rapidly increasing for fuel cell commercialization. An electrocatalyst is an electrical current that acts as a catalyst. A fuel cell is a device that converts chemical energy from a fuel into electricity through an electrochemical reaction of positively charged hydrogen ions with oxygen or another oxidizing agent -- an oxidizing agent or an oxidizer is a chemical species that transfers electronegative atoms, usually oxygen, to a substrate.

These devices are incredibly popular due to their ability to generate electricity by reacting oxygen and hydrogen without emitting CO2. Fuel cells are commonly found in all types of equipment and vehicles, the most common types are found in cars, airplanes, boats and military equipment like submarines and weaponry. There are however limitations to fuel cells: they require platinum which is expensive and found in limited deposits on Earth.

Fuel Cells in Ordinary Life

Nanoparticle-based electrocatalysts have been intensively investigated for fuel cell applications over the past decade, mainly motivated by their high mass activity. Great effort has been exhausted to utilize the high activity and surface area of NPs in order to make a breakthrough for fuel cell commercialization. The team's paper, published in the Journal of the American Chemical Society, stated that a practical use of nanomaterials for fuel cell electrocatalyst is impeded by their low physical and chemical stability. Under the standard fuel cell operating conditions, NPs are often oxidized, dissolved, or detached from the support and clustered into larger particles, losing their electrochemical catalytic activity during cycling. Therefore, ordered intermetallic NPs are considered as one of the most promising candidates to achieve both high activity and stability in practical fuel cell applications.

The resulting ordered tetragonal-PtFe/ C nanocatalyst coated with an N-doped carbon shell shows the higher performance and durability compared to disordered face centered cubic (fcc)-PtFe/C and commercial Pt/C. According to the team's paper, their approach 'can open a new possibility for the development of high performance and cost effective fuel cell catalysts.' The paper entitled 'Highly Durable and Active PtFe Nanocatalyst for Electrochemical Oxygen Reduction Reaction' is published in the Journal of the American Chemical Society.


Institute for Basic Science
How protons move through a fuel cell
Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells.
Microbial fuel cell converts methane to electricity
Transporting methane from gas wellheads to market provides multiple opportunities for this greenhouse gas to leak into the atmosphere.
Stabilizing molecule could pave way for lithium-air fuel cell
Lithium-oxygen fuel cells boast energy density levels comparable to fossil fuels and are thus seen as a promising candidate for future transportation-related energy needs.
How does oxygen get into a fuel cell?
In order for a fuel cell to work, it needs an oxidizing agent.
Petrol and jet fuel alternatives are produced by yeast cell factories
There have been many attempts to modify this stubborn little enzyme, but none have succeeded.
Building a better microbial fuel cell -- using paper
Researchers have made significant progress in developing microbial fuel cells, which rely on bacteria to generate an electrical current, that are cheaper and more efficient.
It's basic: Alternative fuel cell technology reduces cost
The best road to zero-emission vehicles lies in fuel-cell technology, according to the University of Delaware's Yushan Yan.
Fuel cell membrane patented by Sandia outperforms market
Industrial interest is expected in a vehicular fuel cell membrane able to excrete protons at the most effective temperature ranges, allowing electrons to form an unimpeded electric current.
Researchers reduce expensive noble metals for fuel cell reactions
Washington State University researchers have developed a novel nanomaterial that could improve the performance and lower the costs of fuel cells by using fewer precious metals like platinum or palladium.
3-D paper-based microbial fuel cell operating under continuous flow condition
A team of researchers from the Iowa State University in Ames, IA has demonstrated a proof-of-concept three-dimensional paper-based microbial fuel cell (MFC) that could take advantage of capillary action to guide the liquids through the MFC system and to eliminate the need for external power.

Best Science Podcasts 2017

We have hand picked the best science podcasts for 2017. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.

Now Playing: Radiolab

Truth Trolls
Today, a third story of folks relentlessly searching for the truth. But this time, the truth seekers are an unlikely bunch... internet trolls.

Now Playing: TED Radio Hour

Rethinking School
For most of modern history, humans have placed smaller humans in institutions called schools. But what parts of this model still work? And what must change? This hour, TED speakers rethink education.TED speakers include teacher Tyler DeWitt, social entrepreneur Sal Khan, international education expert Andreas Schleicher, and educator Linda Cliatt-Wayman.