Brain neurons help keep track of time

December 08, 2016

Turning the theory of how the human brain perceives time on its head, a novel analysis in mice reveals that dopamine neuron activity plays a key role in judgment of time, slowing down the internal clock. As Patrick Simen and Matthew Matell note in a related Perspective, "The results suggest the need to reassess the leading theory of dopamine function in timing--the dopamine clock hypothesis." Organisms' ability to accurately estimate periods of time is variable and depends on circumstances, including motivation, attention and emotions. Dopamine (DA) neurons residing in the midbrain have been implicated as regulators of this complex process. However, a direct link between the signals carried by DA neurons and timekeeping is lacking. What's more, current studies in which timing behavior is disrupted have demonstrated conflicting results - in some cases, increased DA release speeds up the subjective sense of time, while in other instances, it is slowed down or unaffected. To make sense of DA's involvement in time approximation, Sofia Soares and colleagues tracked DA activity in mice performing timed tasks. The mice were presented with two audible tones, and trained to classify the interval between each as shorter or longer. Soares et al. observed bursts of activity in mouse DA neurons that synchronized exclusively to the second noise, reflecting the rodents' anticipation of an upcoming reward, combined with their surprise about the arrival time of the sound. The authors discovered the transient activation or inhibition of dopamine neurons was sufficient to slow down or speed up time estimation, respectively. Simen and Matell emphasize the brain's fine-tuned ramping up and down of DA signals may prove essential in resolving previous experimental inconsistencies, and identifying novel DA functions that help shape behavior.
-end-


American Association for the Advancement of Science

Related Dopamine Articles from Brightsurf:

Dopamine surge reveals how even for mice, 'there's no place like home'
''There's no place like home,'' has its roots deep in the brain.

New dopamine sensors could help unlock the mysteries of brain chemistry
In 2018, Tian Lab at UC Davis Health developed dLight1, a single fluorescent protein-based biosensor.

Highly sensitive dopamine detector uses 2D materials
A supersensitive dopamine detector can help in the early diagnosis of several disorders that result in too much or too little dopamine, according to a group led by Penn State and including Rensselaer Polytechnic Institute and universities in China and Japan.

Dopamine neurons mull over your options
Researchers at the University of Tsukuba have found that dopamine neurons in the brain can represent the decision-making process when making economic choices.

Viewing dopamine receptors in their native habitat
A new study led by UT Southwestern researchers reveals the structure of the active form of one type of dopamine receptor, known as D2, embedded in a phospholipid membrane.

Significant differences exist among neurons expressing dopamine receptors
An international collaboration, which included the involvement of the research team from the Institut de Neurociències of the UAB (INC-UAB), has shown that neurons expressing dopamine D2 receptors have different molecular features and functions, depending on their anatomical localization within the striatum.

How dopamine drives brain activity
Using a specialized magnetic resonance imaging (MRI) sensor that can track dopamine levels, MIT neuroscientists have discovered how dopamine released deep within the brain influences distant brain regions.

Novelty speeds up learning thanks to dopamine activation
Brain scientists led by Sebastian Haesler (NERF, empowered by IMEC, KU Leuven and VIB) have identified a causal mechanism of how novel stimuli promote learning.

Evidence in mice that childhood asthma is influenced by the neurotransmitter dopamine
Neurons that produce the neurotransmitter dopamine communicate with T cells to enhance allergic inflammation in the lungs of young mice but not older mice, researchers report Nov.

Chronic adversity dampens dopamine production
People exposed to a lifetime of psychosocial adversity may have an impaired ability to produce the dopamine levels needed for coping with acutely stressful situations.

Read More: Dopamine News and Dopamine Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.