Nav: Home

Amber specimen offers rare glimpse of feathered dinosaur tail

December 08, 2016

Researchers have discovered a dinosaur tail complete with its feathers trapped in a piece of amber. The finding reported in Current Biology on December 8 helps to fill in details of the dinosaurs' feather structure and evolution, which can't be determined from fossil evidence.

While the feathers aren't the first to be found in amber, earlier specimens have been difficult to definitively link to their source animal, the researchers say.

"The new material preserves a tail consisting of eight vertebrae from a juvenile; these are surrounded by feathers that are preserved in 3D and with microscopic detail," says Ryan McKellar of the Royal Saskatchewan Museum in Canada. "We can be sure of the source because the vertebrae are not fused into a rod or pygostyle as in modern birds and their closest relatives. Instead, the tail is long and flexible, with keels of feathers running down each side." In other words, the feathers definitely are those of a dinosaur not a prehistoric bird.

The study's first author Lida Xing from the China University of Geosciences (Beijing) discovered the remarkable specimen at an amber market in Myitkyina, Myanmar in 2015. The amber piece was originally seen as some kind of plant inclusion and destined to become a curiosity or piece of jewelry, but Xing recognized its potential scientific importance and suggested that the Dexu Institute of Palaeontology buy the specimen.

The researchers say that the specimen represents the feathered tail of a non-avialan theropod preserved in mid-Cretaceous amber about 99 million years ago. While it was initially difficult to make out the details of the amber inclusion, Xing and his colleagues relied on CT scanning and microscopic observations to get a closer look.

The feathers suggest that the tail had a chestnut-brown upper surface and a pale or white underside. The specimen also offers insight into feather evolution. The feathers lack a well-developed central shaft or rachis. Their structure suggests that the two finest tiers of branching in modern feathers, known as barbs and barbules, arose before a rachis formed.

The researchers also examined the chemistry of the tail inclusion where it was exposed at the surface of the amber. The analysis shows that the soft tissue layer around the bones retained traces of ferrous iron, a relic left over from hemoglobin that was also trapped in the sample.

The findings show the value of amber as a supplement to the fossil record.

"Amber pieces preserve tiny snapshots of ancient ecosystems, but they record microscopic details, three-dimensional arrangements, and labile tissues that are difficult to study in other settings," McKellar says. "This is a new source of information that is worth researching with intensity and protecting as a fossil resource."

The researchers say they are now "eager to see how additional finds from this region will reshape our understanding of plumage and soft tissues in dinosaurs and other vertebrates."
-end-
This work was supported by the Chinese Academy of Science, the National Science Fund of China (31672345), the State's Key Project of Research and Development Plan, he National Geographic Society, USA, and the National Sciences Engineering Research Council, Canada.

Current Biology, Xing and McKellar et al.: "A Feathered Dinosaur Tail with Primitive Plumage Trapped in Mid-Cretaceous Amber" http://www.cell.com/current-biology/fulltext/S0960-9822(16)31193-9

Current Biology (@CurrentBiology), published by Cell Press, is a bimonthly journal that features papers across all areas of biology. Current Biology strives to foster communication across fields of biology, both by publishing important findings of general interest and through highly accessible front matter for non-specialists. Visit: http://www.cell.com/current-biology. To receive Cell Press media alerts, contact press@cell.com.

Cell Press

Related Evolution Articles:

Prebiotic evolution: Hairpins help each other out
The evolution of cells and organisms is thought to have been preceded by a phase in which informational molecules like DNA could be replicated selectively.
How to be a winner in the game of evolution
A new study by University of Arizona biologists helps explain why different groups of animals differ dramatically in their number of species, and how this is related to differences in their body forms and ways of life.
The galloping evolution in seahorses
A genome project, comprising six evolutionary biologists from Professor Axel Meyer's research team from Konstanz and researchers from China and Singapore, sequenced and analyzed the genome of the tiger tail seahorse.
Fast evolution affects everyone, everywhere
Rapid evolution of other species happens all around us all the time -- and many of the most extreme examples are associated with human influences.
Landscape evolution and hazards
Landscapes are formed by a combination of uplift and erosion.
New insight into enzyme evolution
How enzymes -- the biological proteins that act as catalysts and help complex reactions occur -- are 'tuned' to work at a particular temperature is described in new research from groups in New Zealand and the UK, including the University of Bristol.
The evolution of Dark-fly
On Nov. 11, 1954, Syuiti Mori turned out the lights on a small group of fruit flies.
A look into the evolution of the eye
A team of researchers, among them a zoologist from the University of Cologne, has succeeded in reconstructing a 160 million year old compound eye of a fossil crustacean found in southeastern France visible.
Is evolution more intelligent than we thought?
Evolution may be more intelligent than we thought, according to a University of Southampton professor.
The evolution of antievolution policies
Organized opposition to the teaching of evolution in public schoolsin the United States began in the 1920s, leading to the famous Scopes Monkey trial.

Related Evolution Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Setbacks
Failure can feel lonely and final. But can we learn from failure, even reframe it, to feel more like a temporary setback? This hour, TED speakers on changing a crushing defeat into a stepping stone. Guests include entrepreneur Leticia Gasca, psychology professor Alison Ledgerwood, astronomer Phil Plait, former professional athlete Charly Haversat, and UPS training manager Jon Bowers.
Now Playing: Science for the People

#524 The Human Network
What does a network of humans look like and how does it work? How does information spread? How do decisions and opinions spread? What gets distorted as it moves through the network and why? This week we dig into the ins and outs of human networks with Matthew Jackson, Professor of Economics at Stanford University and author of the book "The Human Network: How Your Social Position Determines Your Power, Beliefs, and Behaviours".