Nav: Home

Transplanted interneurons can help reduce fear in mice

December 08, 2016

The expression "once bitten, twice shy" is an illustration of how a bad experience can induce fear and caution. How to effectively reduce the memory of aversive events is a fundamental question in neuroscience. Scientists in China are reporting that by transplanting mouse embryonic interneurons into the brains of mice and combining that procedure with training to lessen fear, they can help to reduce the fear response. The study is being published December 8 in Neuron.

"Anxiety and fear-related disorders such as post-traumatic stress disorder [PTSD] cause great suffering and impose high costs to society," says Yong-Chun Yu, a professor at the Institutes of Brain Science at Fudan University in Shanghai and the study's senior author. "Pharmacological and behavioral treatments of PTSD can reduce symptoms, but many people tend to relapse. There's a pressing need for new strategies to treat these refractory cases."

In the study, the researchers used traditional conditioning to instill fear in the mice. They exposed them to a sound as a neutral stimulus, followed by a mild shock to the foot. To determine the level of fear, they measured the amount of time the mice exhibited freezing behavior--the natural sympathetic fear response in prey animals that is indicated by crouching. They then conducted fear extinction training, in which the mice were exposed to the sound but not the shock. After a few rounds, the freezing response times were significantly reduced.

To determine the contribution that transplanting immature interneurons into the amygdala--a brain structure known to be involved in processing of fear and other emotions--could have on fear extinction training, they inserted medial ganglionic eminence (MGE) cells taken from embryos into the amygdala regions of mature mice. The transplanted cells were labeled with green fluorescent protein, enabling the researchers to experimentally confirm that the new cells were integrating into the brains' circuits.

"We found that although the transplanted interneurons did not alter the formation of fear memories, they reduced recovery and renewal of fear after extinction training," Yu says. However, transplantation of the neurons alone was not enough to reduce fear memories, indicating that the MGE cells were boosting the effectiveness of that training.

"Unexpectedly, we observed that the erasure of fear memory is facilitated only by transplanted immature interneurons--two weeks after transplantation," he adds. "Previous studies had indicated that transplanted MGE cells induce plasticity when they are relatively mature--four weeks after transplantation."

Further studies indicated that the transplanted immature interneurons reactivated a juvenile-like plasticity in the mature amygdala. "Likely related to the changes in the expression of perineuronal nets (PNNs), which are responsible for synaptic stabilization, we found that transplanted immature neurons enhance synaptic plasticity in the amygdala's circuits by disrupting PNNs, converting the amygdala to a juvenile stage," Yu says.

Additional experiments are required to determine how these transplanted immature interneurons rejuvenate the mature circuits. "We still don't know the mechanism by which these immature neurons modulate the fear extinction behavior in the mice," he concludes. "We also need to determine the exact subtype of transplanted interneurons and the exact subregion in the amygdala that are responsible for these behavioral effects."
-end-
This research was supported by the Ministry of Science and Technology of China, the Natural Science Foundation of China, the Foundation of the Ministry of Education of China, and the Shanghai Science and Technology Commission.

Neuron, Yang et al: "Fear Erasure Facilitated by Immature Inhibitory Neuron Transplantation." http://www.cell.com/neuron/fulltext/S0896-6273(16)30856-X

Neuron (@NeuroCellPress), published by Cell Press, is a bimonthly journal that has established itself as one of the most influential and relied upon journals in the field of neuroscience and one of the premier intellectual forums of the neuroscience community. It publishes interdisciplinary articles that integrate biophysical, cellular, developmental, and molecular approaches with a systems approach to sensory, motor, and higher-order cognitive functions. Visit: http://www.cell.com/neuron. To receive Cell Press media alerts, contact press@cell.com

Cell Press

Related Neurons Articles:

A molecule that directs neurons
A research team coordinated by the University of Trento studied a mass of brain cells, the habenula, linked to disorders like autism, schizophrenia and depression.
Shaping the social networks of neurons
Identification of a protein complex that attracts or repels nerve cells during development.
With these neurons, extinguishing fear is its own reward
The same neurons responsible for encoding reward also form new memories to suppress fearful ones, according to new research by scientists at The Picower Institute for Learning and Memory at MIT.
How do we get so many different types of neurons in our brain?
SMU (Southern Methodist University) researchers have discovered another layer of complexity in gene expression, which could help explain how we're able to have so many billions of neurons in our brain.
These neurons affect how much you do, or don't, want to eat
University of Arizona researchers have identified a network of neurons that coordinate with other brain regions to influence eating behaviors.
Mood neurons mature during adolescence
Researchers have discovered a mysterious group of neurons in the amygdala -- a key center for emotional processing in the brain -- that stay in an immature, prenatal developmental state throughout childhood.
Connecting neurons in the brain
Leuven researchers uncover new mechanisms of brain development that determine when, where and how strongly distinct brain cells interconnect.
The salt-craving neurons
Pass the potato chips, please! New research discovers neural circuits that regulate craving and satiation for salty tastes.
When neurons are out of shape, antidepressants may not work
Selective serotonin reuptake inhibitors (SSRIs) are the most commonly prescribed medication for major depressive disorder (MDD), yet scientists still do not understand why the treatment does not work in nearly thirty percent of patients with MDD.
Losing neurons can sometimes not be that bad
Current thinking about Alzheimer's disease is that neuronal cell death in the brain is to blame for the cognitive havoc caused by the disease.
More Neurons News and Neurons Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.