Nav: Home

Researchers building flow battery prototype to augment grid

December 08, 2016

Researchers at Case Western Reserve University are scaling up a prototype iron-flow battery to provide cleaner and cheaper power when renewable energy sources are ebbing or demand is peaking. The battery would also efficiently store excess electricity when use is low.

The engineers received $1.17 million in federal funding and have begun building a 1-kilowatt prototype to provide enough power to run a small window air conditioner, big screen LCD TV, Xbox 360 gaming system and a lamp with a 100-watt incandescent bulb for six hours.

The grant brings the total U.S. Department of Energy's Advanced Research Projects Agency-Energy, or ARPA-E, funding to nearly $3.25 million for this project over the last five years.

"Intermittent energy sources, such as solar and wind, combined with traditional sources of coal and nuclear power, are powering the grid. To meet peak demand, we often use less-efficient coal or gas-powered turbines," said Bob Savinell, distinguished university professor and professor of chemical engineering at Case Western Reserve and co-leader of the flow battery project.

"But if we can store excess energy and make it available at peak use," he said, "we can increase the overall efficiency and decrease the amount of carbon dioxide emitted and lower the cost of electricity."

The biggest challenge to using a battery or other electrochemical device is cost, so Savinell and Jesse Wainright, research professor of chemical engineering, have been developing batteries based on iron, water and other inexpensive materials.

The flow batteries are also safer to operate than lithium ion batteries or others made with exotic, costly and toxic ingredients.

How flow batteries work

In standard batteries, power and energy densities are limited by wrapping all the materials used to convert chemical energy to electrical energy inside a single cell. The batteries wear out as the electrodes, which are part of the fuel, are consumed over time.

In flow batteries, chemical reactants used to produce electrical energy are stored in two tanks, and the electrodes--which are not used as fuel--are housed in a separate chamber. Reactants are pumped through the cell stack, delivering electrons in one direction to charge the battery and to discharge the system in the other.

Flow batteries can be built to produce or store a range of power, by increasing or decreasing the cells in the stack and size of reactant tanks.

The batteries can also be placed in neighborhoods, hospitals or most anywhere. Other energy storage methods are limited by geography. For example, pumped hydroelectric requires elevation changes, and compressed air storage needs caverns.

The prototype

The prototype includes a stack of 10 cells in a battery and is expected to be about the size of a desktop printer tied to two tanks containing a total of 45 gallons of mild electrolyte.

Savinell and Wainright have replaced the conventional solid electrode in the negative half of the battery cell with a slurry of flowing electrically conducting carbon particles that can be used to help convert chemical energy to electrical, and vice-versa. As much slurry as needed can be pumped through the negative chamber and stored in a separate tank. The volume stored determines energy storage capacity, independent of the power density.

"This technology has the potential to be very low-cost, very robust and environmentally benign," Savinell said. Unlike the acid in a typical car battery, the electrolyte in the flow battery is only moderately acidic. "If the tanks leak, it's not a catastrophe, and if you fall in a tank, you won't get hurt," he said.

Nick Sinclair, a research engineer and part-time PhD student at Case Western Reserve, began working on the battery as part of his senior design project in 2011. He came on board as a project engineer after graduating that spring and is now an integral member of the research side of the work.

"We're very interested in knowing some of the most fundamental aspects, starting with how the size, shape, surface chemistry and other characteristics of carbon particles used to make the slurry electrode contribute to making the electrode conductive," Sinclair said.

"Understanding the principles and details on which the battery operates will provide the basis for more broadly using the technology", he said.

Savinell's lab hopes to begin testing the prototype within a year. The flow battery can be used not only to augment power to the grid when solar power wanes, but also as a back-up power source for data centers and hospitals and more.

Since beginning research and development of the iron flow battery, Savinell and his colleagues have submitted several patent applications in the U.S. and internationally and published 12 academic papers on the research, with more in the works.
-end-


Case Western Reserve University

Related Batteries Articles:

A seaweed derivative could be just what lithium-sulfur batteries need
Lithium-sulfur batteries have great potential as a low-cost, high-energy, energy source for both vehicle and grid applications.
Batteries from scrap metal
Chinese scientists have made good use of waste while finding an innovative solution to a technical problem by transforming rusty stainless steel mesh into electrodes with outstanding electrochemical properties that make them ideal for potassium-ion batteries.
Better cathode materials for lithium-sulphur-batteries
A team at the Helmholtz-Zentrum Berlin (HZB) has for the first time fabricated a nanomaterial made from nanoparticles of a titanium oxide compound (Ti4O7) that is characterized by an extremely large surface area, and tested it as a cathode material in lithium-sulphur batteries.
Bright future for self-charging batteries
Who hasn't lived through the frustrating experience of being without a phone after forgetting to recharge it?
Making batteries from waste glass bottles
Researchers at the University of California, Riverside's Bourns College of Engineering have used waste glass bottles and a low-cost chemical process to create nanosilicon anodes for high-performance lithium-ion batteries.
Batteries -- quick coatings
Scientists at Oak Ridge National Laboratory are using the precision of an electron beam to instantly adhere cathode coatings for lithium-ion batteries -- a leap in efficiency that saves energy, reduces production and capital costs, and eliminates the use of toxic solvents.
Lighter, more efficient, safer lithium-ion batteries
Researchers from Universidad Carlos III de Madrid and the Council for Scientific Research (initialed CSIC in Spanish) have patented a method for making new ceramic electrodes for lithium-ion batteries that are more efficient, cheaper, more resistant and safer than conventional batteries.
Clarifying how lithium ions ferry around in rechargeable batteries
IBS scientists observe the real-time ultrafast bonding of lithium ions with the solvents, in the same process that happens during charging and discharging of lithium batteries, and conclude that a new theory is needed.
A new approach to improving lithium-sulfur batteries
Researchers from the University of Delaware and China's Northwestern Polytechnical University, Shenzhen University and Hong Kong Polytechnic University have demonstrated a new polysulfide entrapping strategy that greatly improves the cycle stability of Li-S batteries.
Looking for the next leap in rechargeable batteries
USC researchers may have just found a solution for one of the biggest stumbling blocks to the next wave of rechargeable batteries -- small enough for cellphones and powerful enough for cars.

Related Batteries Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Bias And Perception
How does bias distort our thinking, our listening, our beliefs... and even our search results? How can we fight it? This hour, TED speakers explore ideas about the unconscious biases that shape us. Guests include writer and broadcaster Yassmin Abdel-Magied, climatologist J. Marshall Shepherd, journalist Andreas Ekström, and experimental psychologist Tony Salvador.
Now Playing: Science for the People

#514 Arctic Energy (Rebroadcast)
This week we're looking at how alternative energy works in the arctic. We speak to Louie Azzolini and Linda Todd from the Arctic Energy Alliance, a non-profit helping communities reduce their energy usage and transition to more affordable and sustainable forms of energy. And the lessons they're learning along the way can help those of us further south.