Nav: Home

Amateur astronomer helps uncover secrets of unique pulsar binary system

December 08, 2016

TORONTO A professional astrophysicist and an amateur astronomer have teamed up to reveal surprising details about an unusual millisecond pulsar (MSP) binary system comprising one of the fastest-spinning pulsars in our Galaxy and its unique companion star.

Their observations, to be published in the Astrophysical Journal in December, are the first to identify "star spots" on an MSP's companion star. Plus, the observations show that the companion has a strong magnetic field, and provide clues into why pulsars in some MSP binaries switch on and off.

John Antoniadis, a Dunlap Fellow with the Dunlap Institute for Astronomy & Astrophysics, University of Toronto, and André van Staden, an amateur astronomer from South Africa, analyzed observations of the brightness of the companion star made by van Staden over a 15-month period, with his 30cm reflector telescope and CCD camera in his backyard observatory in Western Cape. The analysis revealed an unexpected rise and fall in the star's brightness.

In a typical MSP binary, the gravity of the pulsar distorts the shape of the companion star, pulling it into a teardrop-shape. As it circles the pulsar, we see a cyclical rise and fall in the companion's brightness. The companion is brightest at two points in its orbit, when we see its broad, tear-shaped profile; it is dimmest midway between those two points, when we see its smallest, circular profile. Naturally, the light curve measuring the brightness rises and falls in step with the companion's orbital period.

But Antoniadis and van Staden's observations revealed that the brightness of the companion wasn't in sync with its 15-hour orbital period; instead the star's peaks in brightness occur progressively later relative to the companion's orbital position.

Antoniadis and van Staden concluded that this was caused by "starspots", the equivalent of our Sun's sunspots, and that the spots were lowering the brightness of the star. What's more, the spots were much larger relative to the companion star's diameter than our Sun's sunspots.

They also realized that the companion star is not tidally locked to the pulsar--as the moon is to the Earth. Instead, they concluded that the companion's rotational period is slightly shorter than its orbital period, resulting in the unexpected light curve.

The presence of starspots also led the collaborators to infer that the star has a strong magnetic field, a prerequisite of such spots.

A dedicated non-professional astronomer for many years, van Staden has a particular interest in pulsars and in 2014 came across Antoniadis' research website listing MSP binaries with optical companions.

"I noted that the binary system MSP J1723-2837 is well suited for observing from South Africa," van Staden says, "and that a light curve had not yet been determined for this particular system."

"I also realized that observations were scarce because professionals do not have the luxury of using professional instruments for continuous observations. On the other hand, non-professionals can make these long-term observations."

"The dataset was unlike anything I had ever seen," says Antoniadis on receiving van Staden's data, "both in terms of quality and timespan. And I urged André to continue observing for as long as possible."

Observations such as van Staden's are critical in answering questions about the evolution and complex relationship between the MSP and its companion in "black widow" and "redback" binaries--pairs of stars in which the pulsar, like its arachnid namesake, devours its companion.

In a typical scenario, a newly formed neutron star feeds off of gas gravitationally pulled from the companion. As the pulsar gains mass, it also gains angular momentum and spins faster.

Eventually, the neutron star is rotating hundreds of times a second. At this point, it enters the next phase of its evolution. The neutron star begins to emit beams of intense radiation that we see as a rapidly pulsating signal: a pulsar is born.

At this point, the pulsar also begins to give off intense gamma-ray radiation and a strong stellar wind that staunch the flow of material from its neighbour. The companion is no longer being cannibalized by the pulsar, but it has only traded the means by which it is being consumed. Now the radiation and wind from the pulsar are so intense they begin to erode the doomed star.

As complex as these MSP binary systems are, they have only gotten more perplexing in recent years with observations that pulsars turn off and return to a state in which they are feeding off material from their companion--and that they can make this transition multiple times.

It has been suggested that the pulsar's stellar wind and radiation may be behind the transition. But an additional result from Antoniadis and van Staden's observations is that the stellar wind from the pulsar is not affecting the companion.

Typically, a pulsar's strong stellar wind and intense radiation output create a "hotspot" on the pulsar-side of the companion. It is as if the star has a "day" and "night" side. But the presence of the hotspot was not detectable in the data. This could mean that the wind is either absent entirely or is blowing in a direction other than toward the star.

Either way, this suggests that the companion's magnetic field--and not the pulsar's stellar wind and radiation--may be the mechanism that turns off pulsars.
Supplementary notes:

1) The MSP lies 2500 light-years away, in the direction of the constellation Sagittarius. It rotates 540 times per second. The distance between the two stars is roughly 2 million kilometres, or 1/30th the distance between the Sun and Mercury. The pulsar is 1.3 times the mass of the Sun; the companion is 0.4 times the mass of the Sun.

2) Eclipsing MSPs are classified based on the mass of their companion star: "Black widow" companions are a few hundredths the mass of the Sun; the more massive "redback" companions range from 0.2 to 0.7 times the mass of the Sun.

An Active, Asynchronous Companion to a Redback Millisecond Pulsar:

Contact details:

Dr. John Antoniadis
Dunlap Institute for Astronomy & Astrophysics
University of Toronto
p: 416-946-5432
Twitter: @astro_vegan

André van Staden
Bredasdorp, Western Cape
South Africa
p: +27-28-424-2796

For more on the Dunlap Institute:

Chris Sasaki
Communications Co-ordinator
Dunlap Institute for Astronomy & Astrophysics
University of Toronto
p: 416-978-6613

The Dunlap Institute for Astronomy & Astrophysics at the University of Toronto is an endowed research institute with over 40 faculty, postdocs, students and staff, dedicated to innovative technology, groundbreaking research, world-class training, and public engagement. The research themes of its faculty and Dunlap Fellows span the Universe and include: optical, infrared and radio instrumentation; Dark Energy; large-scale structure; the Cosmic Microwave Background; the interstellar medium; galaxy evolution; cosmic magnetism; and time-domain science. The Dunlap Institute is committed to making its science, training and public outreach activities productive and enjoyable for everyone, regardless of gender, sexual orientation, disability, physical appearance, body size, race, nationality or religion.

Dunlap Institute for Astronomy & Astrophysics

Related Magnetic Field Articles:

Understanding stars: How tornado-shaped flow in a dynamo strengthens the magnetic field
A new simulation based on the von-Kármán-Sodium (VKS) dynamo experiment takes a closer look at how the liquid vortex created by the device generates a magnetic field.
'Quartz' crystals at the Earth's core power its magnetic field
Scientists at the Earth-Life Science Institute at the Tokyo Institute of Technology report in Nature (Fen.
Brightest neutron star yet has a multipolar magnetic field
Scientists have identified a neutron star that is consuming material so fast it emits more x-rays than any other.
Confirmation of Wendelstein 7-X magnetic field
Physicist Sam Lazerson of the US Department of Energy's Princeton Plasma Physics Laboratory has teamed with German scientists to confirm that the Wendelstein 7-X fusion energy device called a stellarator in Greifswald, Germany, produces high-quality magnetic fields that are consistent with their complex design.
High-precision magnetic field sensing
Scientists have developed a highly sensitive sensor to detect tiny changes in strong magnetic fields.
Brilliant burst in space reveals universe's magnetic field
Scientists have detected the brightest fast burst of radio waves in space to date -- locating the source of the event with more precision than previous efforts.
Optical magnetic field sensor can detect signals from the nervous system
The human body is controlled by electrical impulses in the brain, the heart and nervous system.
What did Earth's ancient magnetic field look like?
New work from Carnegie's Peter Driscoll suggests Earth's ancient magnetic field was significantly different than the present day field, originating from several poles rather than the familiar two.
Just what sustains Earth's magnetic field anyway?
Earth's magnetic field shields us from deadly cosmic radiation, and without it, life as we know it could not exist here.
Ironing out the mystery of Earth's magnetic field
The Earth's magnetic field has been existing for at least 3.4 billion years thanks to the low heat conduction capability of iron in the planet's core.

Related Magnetic Field Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Climate Crisis
There's no greater threat to humanity than climate change. What can we do to stop the worst consequences? This hour, TED speakers explore how we can save our planet and whether we can do it in time. Guests include climate activist Greta Thunberg, chemical engineer Jennifer Wilcox, research scientist Sean Davis, food innovator Bruce Friedrich, and psychologist Per Espen Stoknes.
Now Playing: Science for the People

#527 Honey I CRISPR'd the Kids
This week we're coming to you from Awesome Con in Washington, D.C. There, host Bethany Brookshire led a panel of three amazing guests to talk about the promise and perils of CRISPR, and what happens now that CRISPR babies have (maybe?) been born. Featuring science writer Tina Saey, molecular biologist Anne Simon, and bioethicist Alan Regenberg. A Nobel Prize winner argues banning CRISPR babies won’t work Geneticists push for a 5-year global ban on gene-edited babies A CRISPR spin-off causes unintended typos in DNA News of the first gene-edited babies ignited a firestorm The researcher who created CRISPR twins defends...