Scientists reveal 'safety catch' within all dividing cells

December 08, 2016

Researchers have made a major discovery about how cells control when to divide - representing a step forward in scientists' understanding of one of the most fundamental processes of life.

Their study has revealed a 'safety catch' within cells that prevents them from dividing until DNA is allocated equally to the two daughter cells.

It could lead to new treatments that prevent cancer cells from dividing, or kill them by forcing them to divide prematurely.

A research team from The Institute of Cancer Research, London, The University of Cambridge and University College Dublin set out to reveal the role of a key part of the cellular machinery which helps to govern cell division.

The study is published today in the journal Molecular Cell and was funded by Cancer Research UK, Wellcome, Science Foundation Ireland and the European Union.

The researchers examined the role of a molecule called BubR1 in mitosis -- the process during which a cell copies its chromosomes and pulls them apart into two separate cells.

BubR1 forms part of a molecular machine which prevents cells from dividing until they are ready by stopping the two sets of chromosomes from being pulled apart.

The team focused in on a small part of BubR1 which has been conserved across evolution in all the kingdoms of life except bacteria -- pointing to a fundamental function.

They removed normal BubR1 from cells, replacing it with an altered form which was misshapen in the crucial area. They then timed how long cells with mutant BubR1 could be held up in mitosis using time-lapse photography on high-powered microscopes.

The researchers found that cells with mutant BubR1 were unable to delay in mitosis as normal -- meaning chromosomes were divided unevenly between daughter cells.

They concluded that the crucial part of BubR1 they were studying - which they called the ABBA sequence -- acts as a safety catch, preventing the progression of mitosis until the chromosomes are properly positioned to be pulled apart.

Cancer cells rely on this safety catch much more than normal cells because they often have more chromosomes to get into place and so need more time in mitosis.

It might be possible to treat cancer by rushing cancer cells into premature division and potentially killing them by causing fatal errors within them.

Some drugs that force cancer cells into premature division are already undergoing clinical trials. The new study shows that new classes of small-molecule drugs that switch off BubR1's safety catch could also be developed in the future.

Professor Jon Pines, Head of Cancer Biology at The Institute of Cancer Research, London, said:

"Our study has found a 'safety catch' in the cell division machinery, which prevents cells from dividing before they have confirmed that their chromosomes have been successfully aligned in the cell.

"In the future it might be possible to disable this safety catch in cancer cells with drugs - which would force cells into dividing before they are ready, and potentially kill them by introducing major errors into the division process."

Professor Paul Workman, Chief Executive of The Institute of Cancer Research, London, said:

"Unravelling the complexity of cell division is fundamental to understanding cancer. We know cells rely on safety mechanisms to prevent them from dividing before they are ready, and these may be particularly crucial in cancer cells, with their complex, unstable genomes and extra chromosomes.

"If we could find a way to inactivate this safety catch, we might be able to kill cancer cells specifically by forcing them through division prematurely."

Dr Áine McCarthy, Cancer Research UK's Senior Science Communication Officer, said:

"By looking at how cells divide, these scientists have identified a potential new way to destroy cancer cells, which could in the future lead to the development of new anti-cancer drugs. Early-stage studies like this highlight the importance of carrying out fundamental research which increases our understanding of how cells work - without this, no new treatments can be developed."
-end-
Notes to editors

For more information contact Sophia McCully on 020 7153 5136 or sophia.mccully@icr.ac.uk. For enquiries out of hours, please call 07595 963 613.

The Institute of Cancer Research, London, is one of the world's most influential cancer research organisations.

Scientists and clinicians at The Institute of Cancer Research (ICR) are working every day to make a real impact on cancer patients' lives. Through its unique partnership with The Royal Marsden NHS Foundation Trust and 'bench-to-bedside' approach, the ICR is able to create and deliver results in a way that other institutions cannot. Together the two organisations are rated in the top four centres for cancer research and treatment globally.

The ICR has an outstanding record of achievement dating back more than 100 years. It provided the first convincing evidence that DNA damage is the basic cause of cancer, laying the foundation for the now universally accepted idea that cancer is a genetic disease. Today it is a world leader at identifying cancer-related genes and discovering new targeted drugs for personalised cancer treatment.

A college of the University of London, the ICR is the UK's top-ranked academic institution for research quality, and provides postgraduate higher education of international distinction. It has charitable status and relies on support from partner organisations, charities and the general public.

The ICR's mission is to make the discoveries that defeat cancer. For more information visit http://www.icr.ac.uk

About Cancer Research UK

For further information about Cancer Research UK's work, visit http://www.cancerresearchuk.org.

About Wellcome

Wellcome exists to improve health for everyone by helping great ideas to thrive. We're a global charitable foundation, both politically and financially independent. We support scientists and researchers, take on big problems, fuel imaginations and spark debate.

https://wellcome.ac.uk/

Institute of Cancer Research

Related Cancer Cells Articles from Brightsurf:

Cancer researchers train white blood cells to attacks tumor cells
Scientists at the National Center for Tumor Diseases Dresden (NCT/UCC) and Dresden University Medicine, together with an international team of researchers, were able to demonstrate that certain white blood cells, so-called neutrophil granulocytes, can potentially - after completing a special training program -- be utilized for the treatment of tumors.

New way to target some rapidly dividing cancer cells, leaving healthy cells unharmed
Scientists at Johns Hopkins Medicine and the University of Oxford say they have found a new way to kill some multiplying human breast cancer cells by selectively attacking the core of their cell division machinery.

Breast cancer cells use message-carrying vesicles to send oncogenic stimuli to normal cells
According to a Wistar study, breast cancer cells starved for oxygen send out messages that induce oncogenic changes in surrounding normal epithelial cells.

Breast cancer cells turn killer immune cells into allies
Researchers at Johns Hopkins University School of Medicine have discovered that breast cancer cells can alter the function of immune cells known as Natural killer (NK) cells so that instead of killing the cancer cells, they facilitate their spread to other parts of the body.

Breast cancer cells can reprogram immune cells to assist in metastasis
Johns Hopkins Kimmel Cancer Center investigators report they have uncovered a new mechanism by which invasive breast cancer cells evade the immune system to metastasize, or spread, to other areas of the body.

Engineered immune cells recognize, attack human and mouse solid-tumor cancer cells
CAR-T therapy has been used successfully in patients with blood cancers such as lymphoma and leukemia.

Drug that keeps surface receptors on cancer cells makes them more visible to immune cells
A drug that is already clinically available for the treatment of nausea and psychosis, called prochlorperazine (PCZ), inhibits the internalization of receptors on the surface of tumor cells, thereby increasing the ability of anticancer antibodies to bind to the receptors and mount more effective immune responses.

Engineered bone marrow cells slow growth of prostate and pancreatic cancer cells
In experiments with mice, researchers at the Johns Hopkins Kimmel Cancer Center say they have slowed the growth of transplanted human prostate and pancreatic cancer cells by introducing bone marrow cells with a specific gene deletion to induce a novel immune response.

First phase i clinical trial of CRISPR-edited cells for cancer shows cells safe and durable
Following the first US test of CRISPR gene editing in patients with advanced cancer, researchers report these patients experienced no negative side effects and that the engineered T cells persisted in their bodies -- for months.

Zika virus' key into brain cells ID'd, leveraged to block infection and kill cancer cells
Two different UC San Diego research teams identified the same molecule -- αvβ5 integrin -- as Zika virus' key to brain cell entry.

Read More: Cancer Cells News and Cancer Cells Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.