Nav: Home

RNA modification important for brain function

December 08, 2016

Researchers at the Institute of Molecular Biology (IMB) and Johannes Gutenberg University Mainz (JGU) have shown that a new way of regulating genes is vital for the activity of the nervous system. They found that this form of regulation, a chemical modification on RNA called m6A, is also important in influencing whether flies become male or female. This study clearly shows that RNA modifications play an important role.

In their study, published in Nature, the scientists show that the m6A RNA modification occurs at high levels in the developing fly's nervous system and that it is important for this system to function. When they disrupted the molecular pathway that modifies the RNA, the flies behaved abnormally: they had problems folding their wings correctly, could not orientate themselves anymore, and moved more slowly than flies whose RNA modifications were normal. The effect on locomotion results from an impaired function of the brain. The researchers also show that m6A is important to fine-tune sex determination, i.e., whether a fly develops as male or female.

Dr. Jean-Yves Roignant, a group leader at IMB and corresponding author on the study, says, "The discovery that RNA modifications are so abundant on messenger RNAs was not anticipated until a few years ago and to my view this is one of the most exciting discoveries in the field in the last 15 years. Our study now sheds light on what they do in living organisms. We show that the m6A modification plays an important role in the function of the nervous system and in sex determination in the fruit fly, Drosophila. As this modification is also enriched in the vertebrate nervous system, it is conceivable that it has similar roles in humans."

In order for our bodies to function normally, it is important for genes to be turned on or off in the right cells at the right times. It is already well established that DNA modifications are important to regulate the activity of genes. These molecular marks on the DNA act as signals to the cell machinery that converts the information contained within a gene into a protein, and help determine how a particular gene is regulated. These signals can be added and removed, which changes whether genes are active or inactive. Many different modifications have also been identified on RNA, but what they do in vivo was not well understood. m6A is the most prevalent of these RNA modifications, and scientists have shown that it can be added and removed in an analogous way to DNA modifications. The present publication is the first comprehensive study investigating the role of all components involved in the biogenesis of the m6A RNA modification in a multicellular organism.

Besides finding an important role for m6A in embryonic development, Dr. Jean-Yves Roignant and his team also identified a new component of the molecular machinery that regulates this RNA modification - Spenito. They next intend to investigate how this machinery works in more detail.

Tina Lence, a PhD student in the Roignant lab at IMB and first author of the paper, says, "Now we have found that m6A is there and that it is important for neuronal functions, we want to understand more about its precise role. For example, is m6A important in all circumstances, or is it more involved in the fine-tuning of gene expression or in response to changes in the environment?"

This emerging field of RNA modifications, also called epitranscriptomics, is likely to yield many more exciting findings in the future.
-end-
Researchers involved in the study are based at IMB, Mainz University's Institute of Pharmacy and Biochemistry and the Institute of Zoology, and at the Kimmel Center for Biology and Medicine of the Skirball Institute in New York, USA.

Johannes Gutenberg Universitaet Mainz

Related Nervous System Articles:

Rare cells are 'window into the gut' for the nervous system
Specialized cells in the gut sense potentially noxious chemicals and trigger electrical impulses in nearby nerve fibers, according to a new study led by UC San Francisco scientists.
Study overturns seminal research about the developing nervous system
New research by scientists at the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research at UCLA overturns a long-standing paradigm about how axons grow during embryonic development.
Sympathetic nervous system is critical in regulating energy expenditure and thermogenesis
New study suggests that your brain, not your white blood cells, keeps you warm.
As fins evolve to help fish swim, so does the nervous system
The sensory system in fish fins evolves in parallel to fin shape and mechanics, and is specifically tuned to work with the fish's swimming behavior, according to new research from the University of Chicago.
Antibodies as 'messengers' in the nervous system
Antibodies are able to activate human nerve cells within milliseconds and hence modify their function -- that is the surprising conclusion of a study carried out at Human Biology at the Technical University of Munich (TUM).
Bioimaging: A clear view of the nervous system
A new and versatile imaging technique enables researchers to trace the trajectories of whole nerve cells and provides extensive insights into the structure of neuronal networks.
In the gut, nervous cells are the 'eyes and ears' of the immune system
A team of scientists in Portugal has discovered, in the mouse gut, a novel process that protects the bowel's lining against inflammation and microbial aggressions -- and fights them when they arise.
Biologists discover new strategy to treat central nervous system injury
Neurobiologists at UC San Diego have discovered how signals that orchestrate the construction of the nervous system also influence recovery after traumatic injury.
Delivery strategies of chemotherapy to the central nervous system
The blood-brain barrier and the blood-tumor barrier remain great obstacles to the drug delivery to brain tumors.
520-million-year-old fossilized nervous system is most detailed example yet found
A 520-million-year-old fossilized nervous system -- so well-preserved that individually fossilized nerves are visible -- is the most complete and best example yet found, and could help unravel how the nervous system evolved in early animals.

Related Nervous System Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#SB2 2019 Science Birthday Minisode: Mary Golda Ross
Our second annual Science Birthday is here, and this year we celebrate the wonderful Mary Golda Ross, born 9 August 1908. She died in 2008 at age 99, but left a lasting mark on the science of rocketry and space exploration as an early woman in engineering, and one of the first Native Americans in engineering. Join Rachelle and Bethany for this very special birthday minisode celebrating Mary and her achievements. Thanks to our Patreons who make this show possible! Read more about Mary G. Ross: Interview with Mary Ross on Lash Publications International, by Laurel Sheppard Meet Mary Golda...