Nav: Home

Scientists examine bacterium found 1,000 feet underground

December 08, 2016

Hamilton, ON Dec. 8, 2016 -- Pioneering work being carried out in a cave in New Mexico by researchers at McMaster University and The University of Akron, Ohio, is changing the understanding of how antibiotic resistance may have emerged and how doctors can combat it in the future.

In research published in Nature Communications today, the scientists examined one bacterium found 1,000 feet underground (called Paenibacillus) that demonstrated resistance to most antibiotics used today, including so-called 'drugs of last resort' such as daptomycin. These microorganisms have been isolated from the outside world for more than four million years within the cave.

The results show the bacterium is resistant to 18 different antibiotics and uses identical methods of defense as similar species found in soils. This suggests that the evolutionary pressure to conserve these resistance genes has existed for millions of years -- not just since antibiotics were first used to treat disease.

Among the different ways that the bacteria could be resistant to antibiotics, the scientists identified five novel pathways that were of potential clinical concern. Finding these new pathways is particularly valuable, as it gives researchers time to develop new drugs to combat this type of resistance, potentially decades before it will become a problem for doctors and their patients.

"The diversity of antibiotic resistance and it's its prevalence in microbes across the globe should be humbling to everyone who uses these lifesaving drugs," said Gerry Wright, an author of the paper and scientific director of McMaster's Michael G. DeGroote Institute for Infectious Disease Research.

"It reflects the fact that we must understand that antibiotic use and resistance go hand in hand."

Hazel Barton, professor and director, Integrative Bioscience at The University of Akron, said: "Exploring these challenging and remote environments offers a unique opportunity to sample the genetic diversity of microbes untouched by human activity"

The bacteria were found in Lechuguilla Cave, which is one of the longest caves in the world and deepest in the United States. It is an UNESCO World Heritage Site. Due to the fragile and highly technical nature of the cave, it has been closed to all except a few scientific researchers and cave experts since its original discovery in 1986. This restricted access makes it an ideal environment in which to study how microbes have evolved without the influence of human activity.

Today's research publication follows work by the researchers in 2012 to examine microorganisms from the cave.

Although use of antibiotics revolutionized the treatment of bacterial infections in the 20th century, overuse of antibiotics has led to the emergence of antibiotic resistance in disease causing bacteria. In the U.S., the Centers for Disease Control estimate that more than 20,000 people die each year from otherwise treatable disease.

Both Health Canada and the U.S. national government have released national action plans to address the resistance crisis.
-end-
Editors: New Mexico's Lechuguilla Cave, a place isolated from human contact until recently, is home to a remarkable prevalence of antibiotic-resistant bacteria.

A photo is available for downloading here. https://adobe.ly/2gZSyTq

Photo credit: Max Wisshak (2012)

For more information:

Veronica McGuire
Media Relations
Faculty of Health Sciences
McMaster University
vmcguir@mcmaster.ca
905-525-9140, ext. 22169

Lisa Craig
Media Relations Specialist
The University of Akron
lmc91@uakron.edu
330-972-7429
Cell: 330-608-6503

McMaster University

Related Bacteria Articles:

Bacteria might help other bacteria to tolerate antibiotics better
A new paper by the Dynamical Systems Biology lab at UPF shows that the response by bacteria to antibiotics may depend on other species of bacteria they live with, in such a way that some bacteria may make others more tolerant to antibiotics.
Two-faced bacteria
The gut microbiome, which is a collection of numerous beneficial bacteria species, is key to our overall well-being and good health.
Microcensus in bacteria
Bacillus subtilis can determine proportions of different groups within a mixed population.
Right beneath the skin we all have the same bacteria
In the dermis skin layer, the same bacteria are found across age and gender.
Bacteria must be 'stressed out' to divide
Bacterial cell division is controlled by both enzymatic activity and mechanical forces, which work together to control its timing and location, a new study from EPFL finds.
How bees live with bacteria
More than 90 percent of all bee species are not organized in colonies, but fight their way through life alone.
The bacteria building your baby
Australian researchers have laid to rest a longstanding controversy: is the womb sterile?
Hopping bacteria
Scientists have long known that key models of bacterial movement in real-world conditions are flawed.
Bacteria uses viral weapon against other bacteria
Bacterial cells use both a virus -- traditionally thought to be an enemy -- and a prehistoric viral protein to kill other bacteria that competes with it for food according to an international team of researchers who believe this has potential implications for future infectious disease treatment.
Drug diversity in bacteria
Bacteria produce a cocktail of various bioactive natural products in order to survive in hostile environments with competing (micro)organisms.
More Bacteria News and Bacteria Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.