Nav: Home

The song of silence

December 08, 2016

Okinawa, Japan -- Like humans learning to speak, juvenile birds learn to sing by mimicking vocalizations of adults of the same species during development. Juvenile birds preferentially learn the song of their own species, even in noisy environments with a variety of different birdsongs. But how they can recognize their species' song has, until now, remained a mystery. In a collaborative study, neuroscientists and a physicist at the Okinawa Institute of Science and Technology Graduate University (OIST) have uncovered an innate mechanism for species identification based on the silent gaps between birdsong syllables.

"We co-designed an experiment that works within the constraints of neuroscience while satisfying the requirements of physics," says Professor Mahesh Bandi, head of the Collective Interactions Unit at OIST.

Dr. Makoto Araki and Professor Yoko Yazaki-Sugiyama of OIST's Neuronal Mechanism for Critical Period Unit and Professor Bandi performed a cross-fostering experiment in which juvenile zebra finches were raised by Bengalese finch foster parents to examine how their birdsong develops under the tutoring of a different species. Birdsong is comprised of stereotypical repeats of a few syllables, called 'song motifs', in which syllables are separated by silent gaps. The findings, published in Science, reveal that the fostered zebra finches learned morphologies of Bengalese finch syllables, including syllable duration, but transposed onto zebra finch silent gap patterns. This suggests that temporal gaps between syllables are innate, while syllable morphology can be learned.

"The fostered zebra finches sang the Bengalese finch song with a zebra finch accent," says Professor Yoko Yazaki-Sugiyama.

To determine the neural basis of this innate species detection mechanism, the researchers recorded the activity of neurons in the auditory cortex of adult zebra finch brains during exposure to birdsong. They discovered a first set of neurons which registered temporal gaps of zebra finch songs, as well as a separate second set of neurons that are responsive to syllable morphology.

Using trains of song syllables or white noise separated by silent intervals of varying lengths, they discovered that the first set of neurons are most sensitive to silent gaps with the same duration as the silent gaps found in natural zebra finch song. The neurons did not respond to syllable trains if the duration between syllables was too short or too long. This phenomenon persisted in juvenile zebra finches raised in isolation or cross-fostered by Bengalese finch parents.

This first set of neurons responded strongly to natural zebra finch song. They neither responded to artificial zebra finch song in which the duration of the silent gaps between syllables had been increased, nor to the songs of other species. Together these findings support the existence of neuronal mechanisms that use silent gaps between syllables of birdsong to detect songs of the same species during learning.

"This first set of neurons operate as a kind of neural barcode reader," says Professor Yazaki-Sugiyama.

Each male zebra finch has to develop a unique song that is different from other zebra finches, while maintaining species specific identity. Parallel processing of syllable morphology and temporal silent gaps between syllables discovered by OIST researchers could help explain how these two competing criteria are satisfied.

Decades ago, researchers at Bell Laboratories seeking to boost telecommunication channel capacity developed tools in voice activity detection as well as Information Theory. This collaborative team work by researchers from different disciplines applied Information theoretic tools and discovered similar strategies are hardwired in bird brains to recognize and learn songs of their own species. These findings tell us there is information in silence.
-end-


Okinawa Institute of Science and Technology (OIST) Graduate University

Related Neurons Articles:

How do we get so many different types of neurons in our brain?
SMU (Southern Methodist University) researchers have discovered another layer of complexity in gene expression, which could help explain how we're able to have so many billions of neurons in our brain.
These neurons affect how much you do, or don't, want to eat
University of Arizona researchers have identified a network of neurons that coordinate with other brain regions to influence eating behaviors.
Mood neurons mature during adolescence
Researchers have discovered a mysterious group of neurons in the amygdala -- a key center for emotional processing in the brain -- that stay in an immature, prenatal developmental state throughout childhood.
Astrocytes protect neurons from toxic buildup
Neurons off-load toxic by-products to astrocytes, which process and recycle them.
Connecting neurons in the brain
Leuven researchers uncover new mechanisms of brain development that determine when, where and how strongly distinct brain cells interconnect.
More Neurons News and Neurons Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Erasing The Stigma
Many of us either cope with mental illness or know someone who does. But we still have a hard time talking about it. This hour, TED speakers explore ways to push past — and even erase — the stigma. Guests include musician and comedian Jordan Raskopoulos, neuroscientist and psychiatrist Thomas Insel, psychiatrist Dixon Chibanda, anxiety and depression researcher Olivia Remes, and entrepreneur Sangu Delle.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...