Nav: Home

Oxygen can wake up dormant bacteria for antibiotic attacks

December 08, 2016

Bacterial resistance does not come just through adaptation to antibiotics, sometimes the bacteria simply go to sleep. An international team of researchers is looking at compounds that attack bacteria's ability to go dormant and have found the first oxygen-sensitive toxin antitoxin system.

"Antibiotics can only kill bacteria when they are actively growing and dividing," said Thomas K. Wood, professor of chemical engineering and holder of the Biotechnology Endowed Chair, Penn State. "But, environmental stress factors often turn on a bacterial mechanism that creates a toxin that makes the cell dormant and therefore antibiotic resistant."

Bacteria that form biofilms are often difficult to kill. They can react to environmental signals and produce a toxin that makes the cells go dormant. Antibiotics cannot target dormant cells.

One type of bacterium that does this lives in the gastrointestinal track. Bile, secreted by the liver and stored in the gall bladder, when released into the GI track can kill bacteria. In the presence of bile, these bacteria produce a protein that is a self-toxin and the bacteria go dormant. When the bile is gone, the bacteria produce another protein that destroys the inhibitor protein and the bacteria come alive. These toxin antitoxin systems are inherent in bacteria and serve to protect them against a variety of external, environmental insults.

Wood and his colleagues characterized the first toxin antitoxin system in a biofilm. They report today (Dec. 8) in Nature Communications that this system also is the first known to be oxygen-dependent. The characterization was done at the molecular and atomic level by researchers at the Biomolecular NMR Laboratory at the University of Barcelona, Spain. They found that the E. coli antitoxin's structure had channels that are just large enough for oxygen to pass through. The toxin in this system is Hha and the antitoxin is TomB. However, unlike other toxin antitoxin pairs where the toxin makes the cell dormant and the antitoxin inactivates the toxin by binding, this system needs oxygen in the presence of the antitoxin to oxidize the toxin and wake up the bacteria.

"If we understand the toxin antitoxin systems at a molecular or atomic level, we can make better antimicrobials," said Wood. "I would argue that the toxin antitoxin systems are fundamental to the physiology of all bacteria. We hope this will give us insight into how they survive the antibiotics."

Free-swimming bacteria are usually easily targeted by antibodies or antibiotics, but bacteria that form biofilms are harder to kill. In tuberculosis, the bacteria have as many as 88 different toxin options to react to environmental stresses. According to Wood, this is one of the reasons that TB patients need to stay on antibiotics for months or years to clear the body of all the bacteria.

Biofilms are involved in 80 percent of human infections and are one of the strongest contributors to the pressing antibiotic resistance problem.

The researchers found that 10 percent oxygen is sufficient to wake up the bacteria, but in a biofilm, the problem becomes accessibility. The bacteria on the edges of the film can be easily exposed to oxygen, but those further inside the film might not come into contact with the oxygen. The channels that form in the E. coli biofilm allow the oxygen to penetrate into the biofilm, awaken the bacteria, break up the biofilm and disperse it.

The researchers suggest that this type of toxin, one that is oxygen-dependent, could become the target for antibacterial treatments to inhibit the formation of biofilms.
-end-
Also working on this project at Penn State were W.C. Soo, postdoctoral fellow, and Thammajun L. Wood, research associate in chemical engineering.

Other researchers included Oriol Marimon, Joáo M.C. Teixeira, Tiago N. Cordeiro, Irene Amata, Jesús Garcia, Ainara Morera and Miquel Pons, all at Biomolecular NMR Laboratory, Inorganic and Organic Chemistry Department, University of Barcelona, Spain; Maxim Mayzel, and Vladislave Yu. Orekhov, Swedish NMR Centre, Gothenburg University, Gothenburg, Sweden; and Marina Gay and Marta Vilaseca, Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Barcelona, Spain.

The Army Research Laboratory, Spanish MINECO, EC FP7 BioNMR project supported this work.

Penn State

Related Bacteria Articles:

How bees live with bacteria
More than 90 percent of all bee species are not organized in colonies, but fight their way through life alone.
The bacteria building your baby
Australian researchers have laid to rest a longstanding controversy: is the womb sterile?
Detecting bacteria in space
A new genomic approach provides a glimpse into the diverse bacterial ecosystem on the International Space Station.
Hopping bacteria
Scientists have long known that key models of bacterial movement in real-world conditions are flawed.
Bacteria uses viral weapon against other bacteria
Bacterial cells use both a virus -- traditionally thought to be an enemy -- and a prehistoric viral protein to kill other bacteria that competes with it for food according to an international team of researchers who believe this has potential implications for future infectious disease treatment.
Drug diversity in bacteria
Bacteria produce a cocktail of various bioactive natural products in order to survive in hostile environments with competing (micro)organisms.
Bacteria walk (a bit) like we do
EPFL biophysicists have been able to directly study the way bacteria move on surfaces, revealing a molecular machinery reminiscent of motor reflexes.
Using bacteria to create a water filter that kills bacteria
Engineers have created a bacteria-filtering membrane using graphene oxide and bacterial nanocellulose.
Probiotics are not always 'good bacteria'
Researchers from the Cockrell School of Engineering were able to shed light on a part of the human body - the digestive system -- where many questions remain unanswered.
A chink in bacteria's armor
Scientists have untangled the structure of a recently discovered bacterial wall-building protein, found in nearly all bacteria.
More Bacteria News and Bacteria Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#538 Nobels and Astrophysics
This week we start with this year's physics Nobel Prize awarded to Jim Peebles, Michel Mayor, and Didier Queloz and finish with a discussion of the Nobel Prizes as a way to award and highlight important science. Are they still relevant? When science breakthroughs are built on the backs of hundreds -- and sometimes thousands -- of people's hard work, how do you pick just three to highlight? Join host Rachelle Saunders and astrophysicist, author, and science communicator Ethan Siegel for their chat about astrophysics and Nobel Prizes.