Nav: Home

Researchers identify biomarkers of response to treatment in invasive breast cancer

December 08, 2016

CHAPEL HILL - Why do some breast cancers respond to treatment while others resist it? A study led by researchers at the University of North Carolina Lineberger Comprehensive Cancer Center may provide insight into this important question.

The researchers report at the San Antonio Breast Cancer Symposium that they have identified biomarkers they believe can be used as part of a larger model to predict how patients with HER2-positive operative breast cancer will respond to the targeted treatment trastuzumab, commercially known as Herceptin, and chemotherapy.

"We're trying to find biomarkers for resistance to trastuzumab treatment and chemotherapy," said the study's first author Maki Tanioka, MD, PhD, a postdoctoral research associate at UNC Lineberger. "What's the cause of response? What's the cause of resistance? That's what we are trying to identify in this genomic study."

Tanioka and his colleagues analyzed multiple biologic features of cancer cells from 213 patients treated for HER2-positive breast cancer through a National Cancer Institute cooperative group clinical trial, CALGB 40601. The biologic features included multiple kinds of genetic information such as DNA mutations, DNA copy number and RNA gene expression data. The researchers found that certain gene signatures, and either having too many, or too few, of certain genes were predictive of whether patients responded to treatment, and that combining those two features was the most effective method of predicting response.

Examining features like mutations, amplifications or deletions of genes in tumor cells, the overall subtype of the tumor, as well as indicators of immune responses helped the researchers predict response. The researchers also determined that amplification of a specific chromosome, and a particular gene called MAPK14 on that chromosome, may be a predictor of sensitivity to treatment, while deletions of other genes predicted resistance.

The researchers say the next step is to identify another set of data to validate and broaden their findings.

"HER2-positive breast cancer is genomically heterogeneous," Tanioka said. "Therefore, we need a model that incorporates all these different features. We are actively seeking a set of patient data that we can use to validate the biomarkers we have identified so we can create a comprehensive predictive model of response to allow us to better tailor treatment."
-end-
In addition to Tanioka, other authors include: C. Fan, L.A. Carey, T. Hyslop, B.N. Pitcher, J. Parker, K.A. Hoadley, N.L. Henry, S. Tolaney, C. Dang, I.E. Krop, L. Harris, D.A. Berry, E. Mardis, C.M. Perou, E.P. Winer, and C.A. Hudis.

UNC Lineberger Comprehensive Cancer Center

Related Tumor Cells Articles:

Nutrient deficiency in tumor cells attracts cells that suppress the immune system
A study led by IDIBELL researchers and published this week in the American journal PNAS shows that, by depriving tumor cells of glucose, they release a large number of signaling molecules.
Blocking sugar structures on viruses and tumor cells
During a viral infection, viruses enter the body and multiply in its cells.
Tumor of the touch cells: A first-of-its-kind study in India
A team of researchers from the National Centre for Biological Sciences, Bangalore, a pathologist at the Tata Memorial Centre, Mumbai and scientists at ACTREC, Navi Mumbai, joined hands to study the basis of a skin cancer known as Merkel cell carcinoma (MCC).
Achilles heel of tumor cells
In almost all cases of colon cancer, a specific gene is mutated -- this offers opportunities to develop broadly effective therapeutic approaches.
Engineered T cells may be harnessed to kill solid tumor cells
A new Tel Aviv University study finds that a form of immunotherapy used to treat the blood cancer leukemia may be effective in treating other kinds of cancer as well.
Neurons promote growth of brain tumor cells
In a current paper published in the journal 'Nature', Heidelberg-based researchers and physicians describe how neurons in the brain establish contact with aggressive glioblastomas and thus promote tumor growth / New tumor activation mechanism provides starting points for clinical trials.
Scientists develop technology to capture tumor cells
Instead of searching for a needle in a haystack, what if you were able to sweep the entire haystack to one side, leaving only the needle behind?
Tumor cells' drug addiction may be their downfall
Work by researchers at the Babraham Institute in partnership with the global biopharmaceutical company AstraZeneca shows how cancer cells' acquired resistance to anti-cancer drugs proves fatal once the treatment compound is withdrawn.
The fluid that feeds tumor cells
MIT biologists have found that the nutrient composition of the interstitial fluid that normally surrounds pancreatic tumors is different from that of the culture medium normally used to grow cancer cells.
A bad influence: the interplay between tumor cells and immune cells
Research at Huntsman Cancer Institute (HCI) at the University of Utah (U of U) yielded new insights into the environment surrounding different types of lung tumors, and described how these complex cell ecosystems may in turn ultimately affect response to treatment.
More Tumor Cells News and Tumor Cells Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.