Nav: Home

Newly discovered bacteria-binding protein in the intestine

December 08, 2016

Deficiency in a certain protein in the gastrointestinal tract has been shown to lead to both inflammation and abdominal fat accumulation in mice. The discovery provides yet another piece of the puzzle of how humans are affected -- or not -- by the large quantities of intestinal bacteria we carry with us.

In the study from Sahlgrenska Academy, researchers have addressed the key role of the bacteria-binding protein ZG16 in protecting the body from intestinal bacteria.

"The hope is that eventually, we'll be able to administer this protein to improve protection against bacteria in patients with a defective barrier," says Joakim Bergström, postdoctoral researcher at Sahlgrenska Academy.

Joakim Bergström is in Professor Gunnar C. Hansson's research group, which, eight years ago, was first to discover that there is a protective mucus layer in the intestine that separates intestinal bacteria from the intestinal surface.

Clumping bacteria together

The thick mucus layer prevents the large quantities of bacteria people typically have in the gastrointestinal tract, one to two kilos, from reaching the body's tissues and causing inflammation or other harm.

Structurally, this protective barrier is made of proteins (mucins) that are formed and secreted by the goblet cells of the gastrointestinal tract.

The discovery has led to a brand new area of research and has been followed by numerous findings about how the mucus layer is created, is maintained, moves, and is damaged.

The new research shows that the protein ZG16 binds and clumps bacteria together and thus works with the protective mucus layer in the intestine to keep bacteria at a safe distance from the intestinal mucosa.

Mice that lack the protein develop a mucus layer that is more permeable to bacteria, allowing more bacteria to cross the intestinal mucosa into the body. The increased quantity of bacteria that reach the body's various tissues cause low-grade inflammation.

Improved understanding

The bacteria that slip through from the intestine also led to increased abdominal fat accumulation in the mice that had a defective mucus barrier due to the lack of the protein.

The research group has previously shown that the mucus layer is permeable to bacteria in patients with the gastrointestinal disorder ulcerative colitis and in mouse models of inflammatory bowel disease. The finding of a specific protein that helps prevent bacteria from entering the body is important for the understanding of inflammatory bowel diseases and of the origins of more general diseases such as obesity and inflammation.

"It's becoming very clear now that a significant amount of bacteria leaks through the intestine into the body, which plays a role in inflammatory diseases, and even obesity, at least in mice. This indicates a principle that is probably quite universally applicable," says Gunnar C. Hansson.
-end-
Link to the study: http://www.pnas.org/content/113/48/13833.full

Responsible researchers: Joakim Bergström and Gunnar C. Hansson, both at the Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg.

University of Gothenburg

Related Bacteria Articles:

Conducting shell for bacteria
Under anaerobic conditions, certain bacteria can produce electricity. This behavior can be exploited in microbial fuel cells, with a special focus on wastewater treatment schemes.
Controlling bacteria's necessary evil
Until now, scientists have only had a murky understanding of how these relationships arise.
Bacteria take a deadly risk to survive
Bacteria need mutations -- changes in their DNA code -- to survive under difficult circumstances.
How bacteria hunt other bacteria
A bacterial species that hunts other bacteria has attracted interest as a potential antibiotic, but exactly how this predator tracks down its prey has not been clear.
Chlamydia: How bacteria take over control
To survive in human cells, chlamydiae have a lot of tricks in store.
Stress may protect -- at least in bacteria
Antibiotics harm bacteria and stress them. Trimethoprim, an antibiotic, inhibits the growth of the bacterium Escherichia coli and induces a stress response.
'Pulling' bacteria out of blood
Magnets instead of antibiotics could provide a possible new treatment method for blood infection.
New findings detail how beneficial bacteria in the nose suppress pathogenic bacteria
Staphylococcus aureus is a common colonizer of the human body.
Understanding your bacteria
New insight into bacterial cell division could lead to advancements in the fight against harmful bacteria.
Bacteria are individualists
Cells respond differently to lack of nutrients.

Related Bacteria Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Bias And Perception
How does bias distort our thinking, our listening, our beliefs... and even our search results? How can we fight it? This hour, TED speakers explore ideas about the unconscious biases that shape us. Guests include writer and broadcaster Yassmin Abdel-Magied, climatologist J. Marshall Shepherd, journalist Andreas Ekström, and experimental psychologist Tony Salvador.
Now Playing: Science for the People

#514 Arctic Energy (Rebroadcast)
This week we're looking at how alternative energy works in the arctic. We speak to Louie Azzolini and Linda Todd from the Arctic Energy Alliance, a non-profit helping communities reduce their energy usage and transition to more affordable and sustainable forms of energy. And the lessons they're learning along the way can help those of us further south.