Nav: Home

A nano-roundabout for light

December 08, 2016

Just like in normal road traffic, crossings are indispensable in optical signal processing. In order to avoid collisions, a clear traffic rule is required. A new method has now been developed at TU Wien to provide such a rule for light signals. For this purpose, the two glass fibers were coupled at their intersection point to an optical resonator, in which the light circulates and behaves as in a roundabout. The direction of circulation is defined by a single atom coupled to the resonator. The atom also ensures that the light always leaves the roundabout at the next exit. This rule is still valid even if the light consists merely of individual photons. Such a roundabout will consequently be installed in integrated optical chips - an important step for optical signal processing.

Signal processing using light instead of electronics

The term "optical circulators" refers to elements at the intersection point of two mutually perpendicular optical fibers which direct light signals from one fiber to the other, so that the direction of the light always changes, for example, by 90 ° clockwise. "These components have long been used for freely propagating light beams," says Arno Rauschenbeutel from the Vienna Center for Quantum Science and Technology at the Institute of Atomic and Subatomic Physics of TU Wien. "Such optical circulators are mostly based on the so-called Faraday effect: a strong magnetic field is applied to a transparent material, which is located between two polarization beam splitters which are rotated with respect to each other. The direction of the magnetic field breaks the symmetry and determines in which direction the light is redirected."

However, for technical reasons, components that make use of the Faraday effect cannot be realized on the small scales of nanotechnology. This is unfortunate as such components are important for future technological applications. "Today, we are trying to build optical integrated circuits with similar functions as they are known from electronics," says Rauschenbeutel. Other methods to break the symmetry of the light function only at very high light intensities or suffer from high optical losses. However, in nanotechnology one would like to be able to process very small light signals, ideally light pulses that consist solely of individual photons.

Two glass fibers and a bottle for light

The team of Arno Rauschenbeutel chooses a completely different way: they couple a single rubidium atom to the light field of a so-called "bottle resonator" - a microscopic bulbous glass object on the surface of which the light circulates. If such a resonator is placed in the vicinity of two ultrathin glass fibers, the two systems couple to one another. Without an atom, the light changes from one glass fiber to the other via the bottle resonator. In this way, however, no sense of circulation is defined for the circulator: light, which is deflected by 90° in the clockwise direction, can also travel backwards via the same route, i.e. counter-clockwise.

In order to break this forward/backward symmetry, Arno Rauschenbeutel's team additionally couples an atom to the resonator, which prevents the coupling of the light into the resonator, and thus the overcoupling into the other glass fiber for one of the two directions of circulation. For this trick, a special property of the light is used at TU Wien: the direction of oscillation of the light wave, also known as its polarization.

The interaction between the light wave and the bottle resonator results in an unusual oscillation state. "The polarization rotates like the rotor of a helicopter," Arno Rauschenbeutel explains. The direction of rotation depends on whether the light in the resonator travels clockwise or counter-clockwise: in one case the polarization rotates counter-clockwise, while in the other case it rotates clockwise. The direction of circulation and the polarization of the light are therefore locked together.

If the rubidium atom is correctly prepared and coupled to the resonator, one can make its interaction with the light differ for the two directions of circulation. "The clockwise circulating light is not affected by the atom. The light in the opposite direction, on the other hand, strongly couples to the atom and therefore cannot enter the resonator," says Arno Rauschenbeutel. This asymmetry of the light-atom coupling with respect to the propagation direction of the light in the resonator allows control over the circulator operation: the desired sense of circulation can be adjusted via the internal state of the atom.

The atomic state as a quantum switch

"Because we use only a single atom, we can subtly control the process," says Rauschenbeutel. "The atom can be prepared in a state in which both traffic rules apply at the same time: all light particles then travel together through the circulator in both clockwise and counterclockwise direction." Luckily, this is impossible according to the rules of classical physics, as it would result in chaos in road traffic. In quantum physics however, such superpositions of different states are permitted which opens up entirely new and exciting possibilities for the optical processing of quantum information.
-end-
Original publication:

Quantum optical circulator controlled by a single chirally coupled atom, Science 10.1126/science.aaj2118 (2016)

Vienna University of Technology

Related Polarization Articles:

Ultra-thin optical elements directly measure polarization
For the first time, researchers have used ultra-thin layers of 2D structures known as metasurfaces to create holograms that can measure the polarization of light.
Chance, not ideology, drives political polarization
Michael Macy, Cornell University professor and director of the Social Dynamics Laboratory, published new research examining a phenomena called an 'opinion cascade' -- in which partisans pile onto whatever emerging position they identify with their party.
Separate polarization and brightness channels give crabs the edge over predators
Fiddler crabs see the polarization of light and this gives them the edge when it comes to spotting potentials threats, such as a rival crab or a predator.
Laser and sensor research to be advanced by new inquiries into plasmonic-photonic crystals
The research was dedicated to modelling light transmission throughout photonic crystals with a continuous gold layer on their surface.
Forces behind growing political polarization in congress revealed in new model
A model developed by researchers at Rensselaer Polytechnic Institute, which analyzed millions of roll call votes taken in the US Congress, was able to accurately predict the nature of changes in polarization in 28 of the 30 US Congresses elected in the past six decades.
Dual-polarization radars for forecasting heavy rainfall in China: Research and development
In recent years, with the advent of dual-pol radar technologies in China, dozens of dual-pol radars have been developed by universities, research institutes, and weather observatories.
Camera brings unseen world to light
Researchers at the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) have developed a highly compact, portable camera that can image polarization in a single shot.
Staying in shape: How rod-shaped bacteria grow long, not wide
A team from Harvard University, Marine Biological Laboratory, and collaborators show how the rod-shaped bacteria Bacillus subtilis maintains its precise diameter while growing end to end.
Rurality, social identity is driving polarization in Iowa
What will shape voter attitudes heading into the 2020 election?
Diattenuation imaging -- a promising imaging technique for brain research
A new imaging method provides structural information about brain tissue that was previously difficult to access.
More Polarization News and Polarization Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#538 Nobels and Astrophysics
This week we start with this year's physics Nobel Prize awarded to Jim Peebles, Michel Mayor, and Didier Queloz and finish with a discussion of the Nobel Prizes as a way to award and highlight important science. Are they still relevant? When science breakthroughs are built on the backs of hundreds -- and sometimes thousands -- of people's hard work, how do you pick just three to highlight? Join host Rachelle Saunders and astrophysicist, author, and science communicator Ethan Siegel for their chat about astrophysics and Nobel Prizes.