NUS scientist develops 'toolboxes' for quantum cybersecurity

December 08, 2017

A quantum information scientist from the National University of Singapore (NUS) has developed efficient "toolboxes" comprising theoretical tools and protocols for quantifying the security of high-speed quantum communication. Assistant Professor Charles Lim is part of an international team of experimental and theoretical scientists from Duke University, Ohio State University and Oak Ridge National Laboratory that has recently achieved a significant breakthrough in high-rate quantum secure communication.

Quantum computers are powerful machines that can break today's most prevalent encryption technologies in minutes. Crucially, recent progress in quantum computing has indicated that this threat is no longer theoretical but real, and large-scale quantum computers are now becoming a reality. If successfully implemented, these computers could be exploited to decrypt any organisation's trade secrets, confidential communication, and sensitive data retrospectively or remotely.

Quantum key distribution (QKD) is an emerging quantum technology that enables the establishment of secret keys between two or more parties in an untrusted network. Importantly, unlike conventional encryption techniques, the security of QKD is mathematically unbreakable -- it is based solely on the established laws of nature. As such, messages and data encrypted using QKD keys are completely secure against any attacks on the communication channel. For this reason, QKD is widely seen as the solution that will completely resolve the security threats posed by future quantum computers.

Today, QKD technology is relatively mature and there are now several companies selling QKD systems. Very recently, researchers from China have managed to distribute QKD keys to two ground stations located 1200 kilometres apart. However, despite these major developments and advances, practical QKD systems still face some inherent limitations. One major limitation is the secret key throughput -- current QKD systems are only able to transmit 10,000 to 100,000 secret bits per second. This limitation is largely due to the choice of quantum information basis: many QKD systems are still using low-dimensional information basis, such as the polarisation basis, to encode quantum information.

"Poor secret key rates arising from current QKD implementations have been a major bottleneck affecting the use of quantum secure communication on a wider scale. For practical applications, such systems need to be able to generate secret key rates in the order of megabits per second to meet today's digital communication requirements," said Asst Prof Lim, who is from the Department of Electrical and Computer Engineering at NUS Faculty of Engineering as well as Centre for Quantum Technologies at NUS.

In the study, the research team developed a QKD system based on time and phase bases which allows for more secret bits to be packed into a single photon. Notably, the team had achieved two secret bits in a single photon, with a secret key rate of 26.2 megabits per second.

The findings of the study were published online in scientific journal Science Advances on 24 November 2017.

Time-bin encoding

Encoding quantum information in the time and phase bases is a promising approach that is highly robust against typical optical channel disturbances and yet scalable in the information dimension. In this approach, secret bits are encoded in the arrival time of single photons, while the complementary phase states -- for measuring information leakages -- are encoded in the relative phases of the time states. This encoding technique, in principle, could allow one to pack arbitrarily many bits into a single photon and generate extremely high secret key rates for QKD. However, implementing such high-dimensional systems is technically challenging and tools for quantifying the practical security of high-dimensional QKD are limited.

To overcome these problems for their QKD system, the researchers used a novel combination of security proof techniques developed by Asst Prof Lim and an interferometry technique by Professor Daniel Gauthier's research group from Duke University and Ohio State University. Asst Prof Lim was involved in the protocol design of the QKD system as well as proving the security of the protocol using quantum information theory.

"Our newly developed theoretical and experimental techniques have resolved some of the major challenges for high-dimensional QKD systems based on time-bin encoding, and can potentially be used for image and video encryption, as well as data transfer involving large encrypted databases. This will help pave the way for high-dimensional quantum information processing," added Asst Prof Lim, who is one of the co-corresponding authors of the study.

Next steps

Moving forward, the team will be exploring ways to generate more bits in a single photon using time-bin encoding. This will help advance the development of commercially viable QKD systems for ultra-high rate quantum secure communication.

National University of Singapore

Related Security Articles from Brightsurf:

The development of climate security discourse in Japan
This research traced discourses related to climate security in Japan to determine why so little exists in Japan and whether or not such discourse could suggest new areas for consideration to more comprehensively respond to the climate change problem.

Data Security in Website Tracking
Tracking of our browsing behavior is part of the daily routine of Internet use.

High-security identification that cannot be counterfeited
Researchers from University of Tsukuba have used the principles that underpin the whispering-gallery effect to create an unbeatable anti-counterfeiting system.

New security system to revolutionise communications privacy
A new uncrackable security system created by researchers at King Abdullah University of Science and Technology (KAUST), the University of St Andrews and the Center for Unconventional Processes of Sciences (CUP Sciences) is set to revolutionize communications privacy.

Focus on food security and sustainability
The number of malnourished people is increasing worldwide. More than two billion people suffer from a lack of micronutrients.

Eliminating infamous security threats
Speculative memory side-channel attacks like Meltdown and Spectre are security vulnerabilities in computers.

Holographic color printing for optical security
Researchers from the Singapore University of Technology and Design (SUTD) have invented a new type of anti-counterfeiting device that can be useful for counterfeit deterrence of important documents such as identity cards, passports and banknotes.

UBC study: Publicizing a firm's security levels may strengthen security over time
New research from the UBC Sauder School of Business has quantified the security levels of more than 1,200 Pan-Asian companies in order to determine whether increased awareness of one's security levels leads to improved defense levels against cybercrime.

Peatland contributions to UK water security
Scientists from the University of Leeds have developed a new global index that identifies water supplied from peatlands as a significant source of drinking water for the UK and the Republic of Ireland.

Doctors exploring how to prescribe income security
Physicians at St. Michael's Hospital are studying how full-time income support workers hired by health-care clinics can help vulnerable patients or those living in poverty improve their finances and their health.

Read More: Security News and Security Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to