Deep insight into the heart

December 08, 2017

FRANKFURT. By no means are only elderly people at risk from heart diseases. Physically active individuals can also be affected, for example if a seemingly harmless flu bug spreads to the heart muscle. Should this remain undetected and if, for example, a builder continues with his strenuous job or an athlete carries on training, this can lead to chronic inflammation and in the worst case even to sudden death. The latest issue of the Forschung Frankfurt journal describes how modern non-invasive examinations using state-of-the-art imaging technology can reduce such risks.

Professor Eike Nagel and his 12 coworkers at the Institute for Experimental and Translational Cardio Vascular Imaging of Goethe University Frankfurt are developing better ways to predict and diagnose heart diseases. In recent years, the researchers have taken the lead in the development of a procedure that is still very new in heart scans. Nagel explains the advantages: "With the help of magnetic resonance imaging, we can look right inside the heart muscle." Blood flow to the heart muscle is visualized and shows whether there are any constrictions of the arteries supplying the heart. Experts can also spot whether the heart muscle is scarred, inflamed or displays any other anomalies.

The comparatively fast method makes it possible to examine patients at an early stage and may prevent cardiac insufficiency or even a heart attack. "Diseases such as HIV, kidney damage, rheumatic diseases or tumours often affect the heart either directly or as a side effect of therapy," says Nagel, describing groups potentially at risk. The cardiologist is convinced: "Nowadays we can treat or even cure so many diseases, but the heart suffers too and this should be carefully monitored as it mostly remains undetected."

MRI is a non-invasive and gentle examination technique, which is less risky but just as efficient as an examination using a conventional heart catheter, where a thin tube is pushed in the direction of the heart through an artery. Nagel's research group was recently able to demonstrate this in a large international multi-centre study that was met with international acclaim.

The Institute for Experimental and Translational Cardio Vascular Imaging also has state-of-the-art computer tomography equipment at its disposal that can produce three-dimensional images of the heart. These especially reveal calcium deposits and plaques in the artery walls which could rupture and trigger a sudden heart attack. "This allows us to determine the risk of a heart attack and the need for therapy fast and at an early stage, which can then be non-invasive," says Nagel. Which technique is best for which patient is one of the research topics Nagel's group is evaluating. In some patients, both may be needed and the Institute is optimally equipped to answer most aspects of heart disease thanks to its deep insight into the heart.

Nagel finds these rapid advances in imaging over the last decades fascinating: "Nowadays we can spot the slightest changes and literally get a clear picture of the heart's condition."
-end-
Many further articles on "Image and Imagery" can be found in the current issue of Forschung Frankfurt and show the fascinating use of image material in scientific applications.

Images and captions can be downloaded from: http://www.uni-frankfurt.de/69481709

Further information: Professor Eike Nagel, Institute for Experimental and Translational Cardio Vascular Imaging, University Hospital Frankfurt, Department of Medicine III / Cardiology (House 23 A), Theodor-Stern-Kai 7, D-60590 Frankfurt am Main, Tel.: +49-(0)69-6301-87200, Eike.Nagel@kgu.de

Journalists can order the current issue of Forschung Frankfurt free of charge from Helga Ott, ott@pvw.uni-frankfurt.de.

Online: http://www.forschung-frankfurt.uni-frankfurt.de.

Forschung Frankfurt subscriptions: http://tinygu.de/ff-abonnieren

Current news about science, teaching, and society in GOETHE-UNI online

Goethe University is a research-oriented university in the European financial centre Frankfurt The university was founded in 1914 through private funding, primarily from Jewish sponsors, and has since produced pioneering achievements in the areas of social sciences, sociology and economics, medicine, quantum physics, brain research, and labour law. It gained a unique level of autonomy on 1 January 2008 by returning to its historic roots as a "foundation university". Today, it is among the top ten in external funding and among the top three largest universities in Germany, with three clusters of excellence in medicine, life sciences and the humanities. Together with the Technical University of Darmstadt and the University of Mainz, it acts as a partner of the inter-state strategic Rhine-Main University Alliance. Internet: http://www.uni-frankfurt.de

Publisher: The President of Goethe University Editor: Dr. Anne Hardy, Referee for Science Communication, PR & Communication Department, Theodor-W.-Adorno-Platz 1, 60323 Frankfurt am Main, Tel: (069) 798-13035, Fax: (069) 798-763 12531.

Goethe University Frankfurt

Related Heart Attack Articles from Brightsurf:

Top Science Tip Sheet on heart failure, heart muscle cells, heart attack and atrial fibrillation results
Newly discovered pathway may have potential for treating heart failure - New research model helps predict heart muscle cells' impact on heart function after injury - New mass spectrometry approach generates libraries of glycans in human heart tissue - Understanding heart damage after heart attack and treatment may provide clues for prevention - Understanding atrial fibrillation's effects on heart cells may help find treatments - New research may lead to therapy for heart failure caused by ICI cancer medication

Molecular imaging identifies link between heart and kidney inflammation after heart attack
Whole body positron emission tomography (PET) has, for the first time, illustrated the existence of inter-organ communication between the heart and kidneys via the immune system following acute myocardial infarction.

Muscle protein abundant in the heart plays key role in blood clotting during heart attack
A prevalent heart protein known as cardiac myosin, which is released into the body when a person suffers a heart attack, can cause blood to thicken or clot--worsening damage to heart tissue, a new study shows.

New target identified for repairing the heart after heart attack
An immune cell is shown for the first time to be involved in creating the scar that repairs the heart after damage.

Heart cells respond to heart attack and increase the chance of survival
The heart of humans and mice does not completely recover after a heart attack.

A simple method to improve heart-attack repair using stem cell-derived heart muscle cells
The heart cannot regenerate muscle after a heart attack, and this can lead to lethal heart failure.

Mount Sinai discovers placental stem cells that can regenerate heart after heart attack
Study identifies new stem cell type that can significantly improve cardiac function.

Fixing a broken heart: Exploring new ways to heal damage after a heart attack
The days immediately following a heart attack are critical for survivors' longevity and long-term healing of tissue.

Heart patch could limit muscle damage in heart attack aftermath
Guided by computer simulations, an international team of researchers has developed an adhesive patch that can provide support for damaged heart tissue, potentially reducing the stretching of heart muscle that's common after a heart attack.

How the heart sends an SOS signal to bone marrow cells after a heart attack
Exosomes are key to the SOS signal that the heart muscle sends out after a heart attack.

Read More: Heart Attack News and Heart Attack Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.