Research sheds new light on cause of deadly lung disease

December 08, 2020

New research could shed light on the mystery cause of a lung disease that is a major killer, and potentially unlock new treatments.

Idiopathic pulmonary fibrosis (IPF) affects at least 32,000 people in the UK, and accounts for one per cent of all UK deaths, with patients having a life expectancy of three to five years once diagnosed. The disease involves scar tissue developing abnormally in the lungs, which progressively reduces the ability to breathe.

Up to now, the cause has been unknown - however, a new largescale research study led by the University of Exeter and published in The Lancet Respiratory Medicine has found that short telomeres - a protective component found on the ends of DNA - are linked to higher risk of having IPF.

Moreover, using a complex genetic analysis approach called Mendelian randomisation, researchers found evidence that it's likely that the short telomeres cause IPF, as opposed to the disease itself causing telomere shortening.

The Exeter-based research team collaborated with the Royal Devon & Exeter NHS Foundation Trust, and the universities of Bath and Leicester, as well as patients affected by IPF. They examined data from 1,300 participants with IPF in UK Biobank, and compared it with similar cohorts to ensure their results were replicated.

Senior researcher Dr Chris Scotton, of the University of Exeter Medical School, said: "The cause of idiopathic pulmonary fibrosis has always been difficult to pin down, and it's proven hugely challenging to develop effective treatments. Our research provides the strongest evidence to date that having short telomeres may contribute to the cause of this terrible disease. This means we can look for new ways to prevent or treat IPF, and it's another reason to adopt a healthier lifestyle - because reducing stress and increasing exercise may help keep telomeres longer."

In healthy people, telomeres naturally get shorter as we age. But if this shortening is accelerated, it is thought to be one of the contributing factors to the health issues that we may encounter as we get older. Having less protection at the ends of our DNA can impair our bodies' ability to heal or fight off infection.
-end-
The paper is entitled 'Telomere length and risk of idiopathic pulmonary fibrosis and chronic obstructive pulmonary disease: a Mendelian randomisation study'. Lead Author Anna Duckworth, with Michael A. Gibbons, Richard J. Allen, Howard Almond , Robin N. Beaumont, Andrew R. Wood, Katie Lunnon, Mark A. Lindsay, Louise V. Wain PhD, Jess Tyrrell, and Chris J. Scotton.

University of Exeter

Related DNA Articles from Brightsurf:

A new twist on DNA origami
A team* of scientists from ASU and Shanghai Jiao Tong University (SJTU) led by Hao Yan, ASU's Milton Glick Professor in the School of Molecular Sciences, and director of the ASU Biodesign Institute's Center for Molecular Design and Biomimetics, has just announced the creation of a new type of meta-DNA structures that will open up the fields of optoelectronics (including information storage and encryption) as well as synthetic biology.

Solving a DNA mystery
''A watched pot never boils,'' as the saying goes, but that was not the case for UC Santa Barbara researchers watching a ''pot'' of liquids formed from DNA.

Junk DNA might be really, really useful for biocomputing
When you don't understand how things work, it's not unusual to think of them as just plain old junk.

Designing DNA from scratch: Engineering the functions of micrometer-sized DNA droplets
Scientists at Tokyo Institute of Technology (Tokyo Tech) have constructed ''DNA droplets'' comprising designed DNA nanostructures.

Does DNA in the water tell us how many fish are there?
Researchers have developed a new non-invasive method to count individual fish by measuring the concentration of environmental DNA in the water, which could be applied for quantitative monitoring of aquatic ecosystems.

Zigzag DNA
How the cell organizes DNA into tightly packed chromosomes. Nature publication by Delft University of Technology and EMBL Heidelberg.

Scientists now know what DNA's chaperone looks like
Researchers have discovered the structure of the FACT protein -- a mysterious protein central to the functioning of DNA.

DNA is like everything else: it's not what you have, but how you use it
A new paradigm for reading out genetic information in DNA is described by Dr.

A new spin on DNA
For decades, researchers have chased ways to study biological machines.

From face to DNA: New method aims to improve match between DNA sample and face database
Predicting what someone's face looks like based on a DNA sample remains a hard nut to crack for science.

Read More: DNA News and DNA Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.