UCI-led study offers new approach for more accurate epidemic modeling

December 08, 2020

Irvine, Calif., Dec. 8, 2020 -- A new class of epidemiological models based on alternative thinking about how contagions propagate, particularly in the early phases of a pandemic, provide a blueprint for more accurate epidemic modeling and improved disease spread predictions and responses, according to a study published recently in Scientific Reports by researchers at the University of California, Irvine and other institutions.

In the paper, the scientists said that standard epidemic models incorrectly assume that the rate in which an infectious disease spreads depends on a simple product of the number of infected and susceptible people. The authors instead suggest that transmission happens not through complete mingling of entire populations but at the boundary of sub-groups of infected individuals.

"Standard epidemiological models rely on the presumption of strong mixing between infected and non-infected individuals, with widespread contact between members of those groups," said co-author Tryphon Georgiou, UCI Distinguished Professor of mechanical & aerospace engineering. "We stress, rather, that transmission occurs in geographically concentrated cells. Therefore, in our view, the use of fractional exponents helps us more accurately predict rates of infection and disease spread."

The researchers proposed a "fractional power alternative" to customary models that takes into account susceptible, infected and recovered populations. The value of the exponents in these fractional (fSIR) models depends on factors such as the nature and extent of contact between infected and healthy sub-populations.

The authors explained that during the initial phase of an epidemic, infection proceeds outwards from contagion carriers to the general population. Since the number of susceptible people is much larger than that of the infected, the boundary of infected cells scales at a fractional power of less than one of the area of the cells.

The researchers tested their theory through a series of numerical simulations. They also fitted their fractional models to actual data from Johns Hopkins University Center for Systems Science and Engineering. Those data covered the first few months of the COVID-19 pandemic in Italy, Germany, France and Spain. Through both processes they found the exponent to be in the range of .6 and .8.

"The fractional exponent impacts in substantially different ways how the epidemic progresses during early and later phases, and as a result, identifying the correct exponent extends the duration over which reliable predictions can be made as compared to previous models," Georgiou said.

In the context of the current COVID-19 pandemic, better knowledge about propagation of infections could aid in decisions related to the institution of masking and social distancing mandates in communities.

"Accurate epidemiological models can help policy makers choose the right course of action to help prevent further spread of infectious diseases," Georgiou said.
Collaborators on this project included Amirhossein Taghvaei, UCI postdoctoral fellow in mechanical & aerospace engineering; Larry Norton of Memorial Sloan Kettering Cancer Center, New York City; and Allen Tannenbaum of Stony Brook University, New York. Support was provided by the Air Force Office of Scientific Research, the National Science Foundation and the National Institute of Aging.

About the University of California, Irvine: Founded in 1965, UCI is the youngest member of the prestigious Association of American Universities. The campus has produced three Nobel laureates and is known for its academic achievement, premier research, innovation and anteater mascot. Led by Chancellor Howard Gillman, UCI has more than 36,000 students and offers 222 degree programs. It's located in one of the world's safest and most economically vibrant communities and is Orange County's second-largest employer, contributing $5 billion annually to the local economy. For more on UCI, visit http://www.uci.edu.

Media access: Radio programs/stations may, for a fee, use an on-campus ISDN line to interview UCI faculty and experts, subject to availability and university approval. For more UCI news, visit news.uci.edu. Additional resources for journalists may be found at communications.uci.edu/for-journalists.

University of California - Irvine

Related Infectious Diseases Articles from Brightsurf:

Understanding the spread of infectious diseases
Physicists at M√ľnster University (Germany) have shown in model simulations that the COVID-19 infection rates decrease significantly through social distancing.

Forecasting elections with a model of infectious diseases
Election forecasting is an innately challenging endeavor, with results that can be difficult to interpret and may leave many questions unanswered after close races unfold.

COVID-19 a reminder of the challenge of emerging infectious diseases
The emergence and rapid increase in cases of coronavirus disease 2019 (COVID-19), a respiratory illness caused by a novel coronavirus, pose complex challenges to the global public health, research and medical communities, write federal scientists from NIH's National Institute of Allergy and Infectious Diseases (NIAID) and from the Centers for Disease Control and Prevention (CDC).

Certain antidepressants could provide treatment for multiple infectious diseases
Some antidepressants could potentially be used to treat a wide range of diseases caused by bacteria living within cells, according to work by researchers in the Virginia Commonwealth University School of Medicine and collaborators at other institutions.

Opioid epidemic is increasing rates of some infectious diseases
The US faces a public health crisis as the opioid epidemic fuels growing rates of certain infectious diseases, including HIV/AIDS, hepatitis, heart infections, and skin and soft tissue infections.

Infectious diseases could be diagnosed with smartphones in sub-Saharan Africa
A new Imperial-led review has outlined how health workers could use existing phones to predict and curb the spread of infectious diseases.

The Lancet Infectious Diseases: Experts warn of a surge in vector-borne diseases as humanitarian crisis in Venezuela worsens
The ongoing humanitarian crisis in Venezuela is accelerating the re-emergence of vector-borne diseases such as malaria, Chagas disease, dengue, and Zika virus, and threatens to jeopardize public health gains in the country over the past two decades, warn leading public health experts.

Glow-in-the-dark paper as a rapid test for infectious diseases
Researchers from Eindhoven University of Technology (The Netherlands) and Keio University (Japan) present a practicable and reliable way to test for infectious diseases.

Math shows how human behavior spreads infectious diseases
Mathematics can help public health workers better understand and influence human behaviors that lead to the spread of infectious disease, according to a study from the University of Waterloo.

Many Americans say infectious and emerging diseases in other countries will threaten the US
An overwhelming majority of Americans (95%) think infectious and emerging diseases facing other countries will pose a 'major' or 'minor' threat to the U.S. in the next few years, but more than half (61%) say they are confident the federal government can prevent a major infectious disease outbreak in the US, according to a new national public opinion survey commissioned by Research!America and the American Society for Microbiology.

Read More: Infectious Diseases News and Infectious Diseases Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.