Standard helps control quality of joint replacements

December 09, 2003

Ionizing radiation isn't generally thought of as good for you, but it's good for artificial hips. A new reference material from the National Institute of Standards and Technology (NIST) will help researchers determine what methods of irradiating the plastic parts in joint replacements during manufacturing will best increase their wear resistance.

Reference Material 8457 is intended to help address concerns about the long-term durability of orthopedic hip implants amid growing use of these devices in younger, more active patients. It is well known that radiation can create new chemical bonds between adjacent molecular chains in a special form of polyethylene used to make the socket for the metal ball and shaft in an artificial hip. This "crosslinking" creates a structure that resists sliding forces and wear. Manufacturers and researchers need to control radiation conditions to achieve the intended wear resistance; too much radiation causes brittleness, and too little can result in poor wear resistance.

The NIST material consists of 10 small, identical cubes of polyethylene. The cubes are intended for use as control samples in a new ASTM International standard test method. The method involves immersing cubes in an organic liquid and measuring how much the material swells. Samples that expand the most have the least amount of crosslinking. Each reference material comes with a certificate that provides precise cube dimensions and information about swelling from a series of round-robin tests involving six laboratories.

The reference material will help researchers and implant manufacturers control or optimize a variety of processing parameters, such as the type (gamma radiation or electron beams), timing, and doses of radiation used for crosslinking.
-end-


National Institute of Standards and Technology (NIST)

Related Radiation Articles from Brightsurf:

Sheer protection from electromagnetic radiation
A printable ink that is both conductive and transparent can also block radio waves.

What membrane can do in dealing with radiation
USTC recently found that polymethylmethacrylate (PMMA) and polyvinyl chloride (PVC) can release acidic substance under γ radiation, whose amount is proportional to the radiation intensity.

First measurements of radiation levels on the moon
In the current issue (25 September) of the prestigious journal Science Advances, Chinese and German scientists report for the first time on time-resolved measurements of the radiation on the moon.

New biomaterial could shield against harmful radiation
Northwestern University researchers have synthesized a new form of melanin enriched with selenium.

A new way to monitor cancer radiation therapy doses
More than half of all cancer patients undergo radiation therapy and the dose is critical.

Nimotuzumab-cisplatin-radiation versus cisplatin-radiation in HPV negative oropharyngeal cancer
Oncotarget Volume 11, Issue 4: In this study, locally advanced head and neck cancer patients undergoing definitive chemoradiation were randomly allocated to weekly cisplatin - radiation {CRT arm} or nimotuzumab -weekly cisplatin -radiation {NCRT arm}.

Breaking up amino acids with radiation
A new experimental and theoretical study published in EPJ D has shown how the ions formed when electrons collide with one amino acid, glutamine, differ according to the energy of the colliding electrons.

Radiation breaks connections in the brain
One of the potentially life-altering side effects that patients experience after cranial radiotherapy for brain cancer is cognitive impairment.

Fragmenting ions and radiation sensitizers
The anti-cancer drug 5-fluorouracil (5FU) acts as a radiosensitizer: it is rapidly taken up into the DNA of cancer cells, making the cells more sensitive to radiotherapy.

'Seeing the light' behind radiation therapy
Delivering just the right dose of radiation for cancer patients is a delicate balance in their treatment regime.

Read More: Radiation News and Radiation Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.