'Signal' identified that enables malarial parasites to target blood cells

December 09, 2004

Northwestern University researchers have identified a key molecular "signal" that allows malarial parasites to release virulence proteins inside human red blood cells.

The investigators, led by Kasturi Haldar and N. Luisa Hiller, also found that the process by which the malarial parasite remodels red blood cells is far more complex than scientists previously had realized.

Haldar is Charles E. and Emma H. Morrison Professor in Pathology and professor of microbiology-immunology and Hiller a sixth-year student in the Integrated Graduate Program in the Life Sciences at Northwestern University Feinberg School of Medicine.

Other key researchers on this study were Souvik Bhattacharjee; Christiaan van Ooij; Konstantinos Liolios; Travis Harrison; and Carlos Estrano.

Findings from the Northwestern study were published in the Dec. 10 issue of the journal Science.

Malaria is a blood-borne illness transmitted by mosquitoes. Forty percent of the world's population lives at risk for infection, and between 200 and 300 million people are afflicted each year, particularly in underdeveloped and impoverished tropical and sub-Saharan countries.

Plasmodium faciparum is the most virulent form of the four human malarial parasite species, killing over 1 million children each year, and is responsible for 25 percent of infant mortality in Africa, according to the World Health Organization.

Following invasion of human red blood cells - the "blood stage" of malaria - P. falciparum exports proteins that modify the properties of the host red blood cell membrane, are required for parasite survival and are responsible for fatal pathologies such as cerebral - or "brain" - malaria as well as placental malaria.

It is during the "blood stage" of malaria when symptoms of malaria occur. These symptoms include fever and flu-like symptoms, such as chills, headache, muscle aches and fatigue, as well as complex disease pathologies of cerebral malaria (leading to coma), metabolic acidosis and anemia. Immunity is slow to develop, and left untreated, malaria may be fatal, taking its greatest toll in children and pregnant women.

How the malaria parasite targets proteins to the host red blood cell was essentially unknown. Using cutting-edge bioinformatic techniques combined with functional studies, the researchers identified a "signal" on exported parasite proteins that is required for their secretion into the host.

This signal is present on more than 320 proteins, which represents approximately 6 percent of total proteins encoded in the P. falciparum genome, indicating that modification of this export signal not only established a major host-targeting pathway but also enabled the recognition of a wide range of proteins (a "secretome") that present high-value candidate effectors of disease and infection.

Results revealed the power of functional informatics to lead scientists from the tip of the iceberg (five to 10 parasite proteins exported to the erythrocyte) to the global complexity of infection (where the parasite is exporting dozens of proteins).

Remarkably, 91 of the secretome proteins share few or no similarities with known cellular proteins, emphasizing novel and complex ways in which the malarial parasite establishes infection in human red blood cells.

These proteins represent a vastly expanded pool of major candidate targets to block blood stage infection as well as complex disease pathologies associated with acute and severe malaria.
-end-


Northwestern University

Related Malaria Articles from Brightsurf:

Clocking in with malaria parasites
Discovery of a malaria parasite's internal clock could lead to new treatment strategies.

Breakthrough in malaria research
An international scientific consortium led by the cell biologists Volker Heussler from the University of Bern and Oliver Billker from the UmeƄ University in Sweden has for the first time systematically investigated the genome of the malaria parasite Plasmodium throughout its life cycle in a large-scale experiment.

Scientists close in on malaria vaccine
Scientists have taken another big step forward towards developing a vaccine that's effective against the most severe forms of malaria.

New tool in fight against malaria
Modifying a class of molecules originally developed to treat the skin disease psoriasis could lead to a new malaria drug that is effective against malaria parasites resistant to currently available drugs.

Malaria expert warns of need for malaria drug to treat severe cases in US
The US each year sees more than 1,500 cases of malaria, and currently there is limited access to an intravenously administered (IV) drug needed for the more serious cases.

Monkey malaria breakthrough offers cure for relapsing malaria
A breakthrough in monkey malaria research by two University of Otago scientists could help scientists diagnose and treat a relapsing form of human malaria.

Getting to zero malaria cases in zanzibar
New research led by the Johns Hopkins Center for Communication Programs, Ifakara Health Institute and the Zanzibar Malaria Elimination Program suggests that a better understanding of human behavior at night -- when malaria mosquitoes are biting -- could be key to preventing lingering cases.

Widely used malaria treatment to prevent malaria in pregnant women
A global team of researchers, led by a research team at the Liverpool School of Tropical Medicine (LSTM), are calling for a review of drug-based strategies used to prevent malaria infections in pregnant women, in areas where there is widespread resistance to existing antimalarial medicines.

Protection against Malaria: A matter of balance
A balanced production of pro and anti-inflammatory cytokines at two years of age protects against clinical malaria in early childhood, according to a study led by ISGlobal, an institution supported by ''la Caixa'' Foundation.

The math of malaria
A new mathematical model for malaria shows how competition between parasite strains within a human host reduces the odds of drug resistance developing in a high-transmission setting.

Read More: Malaria News and Malaria Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.