U of M research explores addiction as a computational process

December 09, 2004

MINNEAPOLIS/ST.PAUL (December 9, 2004) - A University of Minnesota researcher developed a computational model of addiction which can be used to make predictions about human behavior, animal behavior, and neurophysiology. By bringing addiction theory into a computational realm, researchers will be able to ask and answer key questions to gain valuable insight into addictive behavior. The model was developed based on two hypotheses: that dopamine serves as a reward-error learning signal to produce temporal-difference learning in the normal brain, and that cocaine produces an increase in dopamine directly in phases. The research will be published in the December 10 issue of Science.

Addiction is likely to be a complex process arising from transitions between learning algorithms. Because this model has key variables and values in place, researchers can test a variety of questions regarding addictive behaviors to better understand factors of addiction.

"Different theories about addictions have existed for a long time, but had not yet been connected with learning and memory," said David Redish, Ph. D., Department of Neuroscience, University of Minnesota. "By connecting addiction research with learning and memory research, we are able to use learning and memory models to test and predict a variety of addictive behaviors and signals."

Addictive drugs have been hypothesized to access the same neurophysiological mechanisms as natural learning systems. These systems can be modeled through temporal-difference reinforcement learning (TDRL), which requires a reward-error signal thought to be carried by dopamine.

Natural increases in dopamine occur after unexpected natural rewards; however, with learning these increases shift from the time of reward delivery to cueing stimuli. In TDRL, once the value function predicts the reward, learning stops. Cocaine and other addictive drugs, however, produce a momentary increase in dopamine through neuropharmacological mechanisms, thereby continuing to drive learning, forcing the brain to over-select choices which lead to getting drugs.

This computational model of addiction connects a variety of disparate learning theories and will allow researches to test how addiction impacts learning systems.
-end-
The Academic Health Center is home to the University of Minnesota's six health professional schools and colleges as well as several health-related centers and institutes. Founded in 1851, the University is one of the oldest and largest land grant institutions in the country. The AHC prepares the new health professionals who improve the health of communities, discover and deliver new treatments and cures, and strengthen the health economy.

University of Minnesota

Related Memory Articles from Brightsurf:

Memory of the Venus flytrap
In a study to be published in Nature Plants, a graduate student Mr.

Memory protein
When UC Santa Barbara materials scientist Omar Saleh and graduate student Ian Morgan sought to understand the mechanical behaviors of disordered proteins in the lab, they expected that after being stretched, one particular model protein would snap back instantaneously, like a rubber band.

Previously claimed memory boosting font 'Sans Forgetica' does not actually boost memory
It was previously claimed that the font Sans Forgetica could enhance people's memory for information, however researchers from the University of Warwick and the University of Waikato, New Zealand, have found after carrying out numerous experiments that the font does not enhance memory.

Memory boost with just one look
HRL Laboratories, LLC, researchers have published results showing that targeted transcranial electrical stimulation during slow-wave sleep can improve metamemories of specific episodes by 20% after only one viewing of the episode, compared to controls.

VR is not suited to visual memory?!
Toyohashi university of technology researcher and a research team at Tokyo Denki University have found that virtual reality (VR) may interfere with visual memory.

The genetic signature of memory
Despite their importance in memory, the human cortex and subcortex display a distinct collection of 'gene signatures.' The work recently published in eNeuro increases our understanding of how the brain creates memories and identifies potential genes for further investigation.

How long does memory last? For shape memory alloys, the longer the better
Scientists captured live action details of the phase transitions of shape memory alloys, giving them a better idea how to improve their properties for applications.

A NEAT discovery about memory
UAB researchers say over expression of NEAT1, an noncoding RNA, appears to diminish the ability of older brains to form memories.

Molecular memory can be used to increase the memory capacity of hard disks
Researchers at the University of Jyväskylä have taken part in an international British-Finnish-Chinese collaboration where the first molecule capable of remembering the direction of a magnetic above liquid nitrogen temperatures has been prepared and characterized.

Memory transferred between snails
Memories can be transferred between organisms by extracting ribonucleic acid (RNA) from a trained animal and injecting it into an untrained animal, as demonstrated in a study of sea snails published in eNeuro.

Read More: Memory News and Memory Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.