Plastic as a conductor

December 09, 2008

You could hardly find greater contrasts in one and the same team. Plastic is light and inexpensive, but insulates electric current. Metal is resilient and conducts electricity, but it is also expensive and heavy. Up to now, it has not been possible to combine the properties of these two materials. The IFAM in Bremen has devised a solution that combines the best of both worlds without requiring new machinery to process the components. The greatest challenge for the researchers was getting the plastic to conduct electricity, for plastic-metal hybrids are to be used in the very places where plastic components are equipped with printed circuit boards, for instance in cars or aircraft. Until now, this was only possible via the roundabout route of punching and bending metal sheets in an elaborate process in order to integrate them in a component.

The new solution is simpler: a composite material. The different materials are not merely slotted together or bonded, but mixed in a special process to form a single material. This process produces a homogeneous and fine-meshed electrically conductive network. The composite possesses the desired chemical stability and low weight, coupled with the electrical and thermal conductivity of metals. As it will no longer be necessary in future to integrate metal circuit boards and the components will soon be able to be produced in a single work step, the production costs and the weight of the material are drastically reduced.

Automobile and aircraft manufacturers, in particular, will benefit from this development. The headlamp housings on a car, for example, are made of plastic. Until now, punched metal sheets have been installed in order to illuminate the headlamps. If the housings were fitted with circuit boards made of the conductive plastic-metal hybrids, they could be produced more efficiently and at lower cost than ever before. Many components of an aircraft, such as the fuselage, are partly made of carbon fiber composites (CFC). However, they lack the ability to conduct electricity. A stroke of lightning would have fatal consequences. A plastic-metal hybrid would be a good alternative for discharge structures on components.
-end-


Fraunhofer-Gesellschaft

Related Thermal Conductivity Articles from Brightsurf:

Clemson researchers decode thermal conductivity with light
Clemson researchers examine a highly efficient thermoelectric material in a new way - by using light.

Collaboration sparks new model for ceramic conductivity
As insulators, metal oxides - also known as ceramics - may not seem like obvious candidates for electrical conductivity.

Topology-optimized thermal cloak-concentrator
Cloaking a concentrator in thermal conduction via topology optimization. A simultaneous cloaking and concentrating of heat flux is achieved through topology optimization, a computational structural design methodology.

Investigating a thermal challenge for MOFs
New research led by an interdisciplinary team across six universities examines heat transfer in MOFs and the role it plays when MOFs are used for storing fuel.

Thermal manipulation of plasmons in atomically thin films
Nanoscale photothermal effects can induce substantial changes in the optical response experienced by the probing light, thus suggesting their applications in all-optical light modulation.

Making plastic more transparent while also adding electrical conductivity
In an effort to improve large touchscreens, LED light panels and window-mounted infrared solar cells, researchers at the University of Michigan have made plastic conductive while also making it more transparent.

Extremely low thermal conductivity in 1D soft chain structure BiSeX (X = Br, I)
Researchers found a new sort of simple one-dimensional (1D) crystal structured bismuth selenohalides (BiSeX, X = Br, I) with extremely low thermal conductivity.

Minimizing thermal conductivity of crystalline material with optimal nanostructure
Japanese researchers successfully minimized thermal conductivity by designing, fabricating, and evaluating the optimal nanostructure-multilayer materials through materials informatics (MI), which combines machine learning and molecular simulation.

Scientists measured electrical conductivity of pure interfacial water
Skoltech scientists in collaboration with researchers from the University of Stuttgart, the Karlsruhe Institute of Technology and the Russian Quantum Center achieved the first systematic experimental measurements of the electrical conductivity of pure interfacial water, hence producing new results significantly extending our knowledge of interfacial water.

Atomic magnetometer points to better picture of heart conductivity
Mapping the electrical conductivity of the heart would be a valuable tool in diagnosis and disease management, but doing so would require invasive procedures, which aren't capable of directly mapping dielectric properties.

Read More: Thermal Conductivity News and Thermal Conductivity Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.