A new target for lymphoma therapy

December 09, 2009

Researchers at the Program in Cellular and Molecular Medicine and the Immune Disease Institute at Children's Hospital Boston (PCMM/IDI) have found a link between a common mutation that can lead to cancer and a distant gene regulator that enhances its activity. Discovery of this relationship could lead to drugs targeting B-cell lymphomas, including Burkitt's lymphoma, an aggressive cancer in children, as well as multiple myelomas and other blood-related cancers.

Lymphomas often originate in B cells, the same cells that produce antibodies to help fight infections. A B cell can become cancerous if a gene known as c-myc leaps to another section of DNA (the IgH region, responsible for building antibodies), fuses with it, and somehow becomes over-activated. Scientists have wondered for years how this oncogenic activation occurs, in particular what component in the IgH region activates c-myc. The new study, published in the Dec. 10 issue of Nature, identifies this regulatory component, and marks the first time researchers are able to understand how this movement of genes, or "chromosomal translocation," can hijack a B cell's operation badly enough to lead to cancer.

"IgH-to-myc translocation is the classic example of activation of an oncogene in cancer," says Frederick Alt, PhD, scientific director of PCMM/IDI and senior author of the study. "But nobody really understood how it works."

Aberrant DNA translocations can occur during two different stages of a B cell's development: during a process known as VDJ recombination, when a progenitor B cell creates an antibody to fight a specific pathogen, or during class switch recombination, when a mature B cell gives its antibody a different strategy to fight infection (changing from an IgM to an IgG antibody, for example). Based on their past research , Alt and his colleagues decided to focus on one part of the IgH region called IgH 3' regulatory region (IgH3'RR). They had already shown IgH3'RR to be a far-reaching gene regulator that enhances the transcription of neighboring genes in the IgH region during class switch recombination.

To investigate the relationship between IgH3'RR and lymphoma, the team, led by Alt and first author Monica Gostissa, PhD, of PCMM/IDI, deleted the IgH3'RR in a line of mutant mice previously generated in the Alt lab. These mice routinely develop a B-cell lymphoma in which c-myc is translocated to the IgH region of the DNA. However, without IgH3'RR, mature B cells did not become cancerous, suggesting that mature B cells -- from which most human lymphomas originate -- need IgH3'RR in order to develop into lymphoma.

"The study shows that the IgH3'RR is a key element for turning on the cancer-causing activity of c-myc after it is translocated to the IgH locus," says Alt. He noted that the study also shows that the cancer-causing activity of the IgH3'RR on c-myc can extend over surprisingly long chromosomal distances.

The study suggests the IgH3'RR as a new target for arresting lymphomas and other blood-related cancers that arise from mature B cells. Though inactivating IgH3'RR can impair a B cell's versatility in creating different classes of antibodies, it would not leave a patient immune-deficient because the B cells would retain some of their activity, says Gostissa. Furthermore, such a treatment would be reversible.

The next step is for the researchers to see what eliminating IgH3'RR will do to existing tumors, and then to create a cell-based drug screening assay to test for possible IgH3'RR inhibitors.
-end-
The study was funded by grants from the National Institutes of Health and the Leukemia and Lymphoma Society of America (including funds from the de Villiers International Achievement Award). Alt is an investigator of the Howard Hughes Medical Institute.

Monica Gostissa, Catherine T. Yan, Julia M. Bianco, Michel Cogne, Eric Pinaud and Frederick W. Alt. "Long-range Oncogenic Activation of IgH/c-myc Translocations by the IgH 3' Regulatory Region."
Nature. Dec. 10, 2009.

Children's Hospital Boston is home to the world's largest research enterprise based at a pediatric medical center, where its discoveries have benefited both children and adults since 1869. More than 500 scientists, including eight members of the National Academy of Sciences, 13 members of the Institute of Medicine and 12 members of the Howard Hughes Medical Institute comprise Children's research community. Founded as a 20-bed hospital for children, Children's Hospital Boston today is a 396-bed comprehensive center for pediatric and adolescent health care grounded in the values of excellence in patient care and sensitivity to the complex needs and diversity of children and families. Children's also is the primary pediatric teaching affiliate of Harvard Medical School. For more information about the hospital and its research visit: www.childrenshospital.org/newsroom.

Boston Children's Hospital

Related Cancer Articles from Brightsurf:

New blood cancer treatment works by selectively interfering with cancer cell signalling
University of Alberta scientists have identified the mechanism of action behind a new type of precision cancer drug for blood cancers that is set for human trials, according to research published in Nature Communications.

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.

Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.

Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.

More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.

New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.

American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.

Read More: Cancer News and Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.