Coaxing injured nerve fibers to regenerate by disabling 'brakes' in the system

December 09, 2009

Boston, Mass. -- Brain and spinal-cord injuries typically leave people with permanent impairment because the injured nerve fibers (axons) cannot regrow. A study from Children's Hospital Boston, published in the December 10 issue of the journal Neuron, shows that axons can regenerate vigorously in a mouse model when a gene that suppresses natural growth factors is deleted.

Adding to a previous study published in Science last year, research led by Zhigang He, PhD, of the F.M. Kirby Neurobiology Center at Children's Hospital Boston provides further evidence that axon regeneration is limited by a reduced or lost responsiveness to injury-induced growth factors -- and also suggests some ways of overcoming the problem to help people recover from brain or spinal cord injury.

In the earlier study, He and colleagues used genetic techniques to delete two inhibitors of a growth pathway known as the mTOR pathway in the retinal ganglion cells of mice. (These cells constitute the optic nerve, which carries visual input from the retina to the brain.) Removing this inhibition brought about vigorous growth in injured axons, but not in uninjured axons, suggesting that something about the injury itself helps trigger axon regeneration.

In the new study, He and colleagues used a second set of genetic techniques in mice to delete a suppressor of inflammatory signaling, known as SOCS3, in retinal ganglion cells -- and again saw robust axon growth after injury. The greatest effect was seen after one week, when there were also signs that the mTOR pathway was re-activated.

In addition, soon after injury, the team observed an increase in a growth factor called CNTF (ciliary neurotrophic factor) in the retina. When CNTF was applied directly to the eye, axons grew even more than they did with SOCS3 deletion alone. However, CNTF only modestly increased growth in mice that did not have SOCS3 deleted.

"CNTF and other cytokines [cellular signaling molecules] have been tested for promoting axon regeneration previously, but with no success," notes He. "Now we know that this is due to the tight negative control of SOCS3. Inhibiting SOCS3, using small molecule compounds or RNA interference, might allow these cytokine growth factors to be functional."

Another way of promoting axon regeneration, based on the team's findings, could be to directly stimulate the signaling pathway that SOCS3 inhibits, known as JAK/STAT, adds Fang Sun, PhD, who shares first authorship of the paper with Patrice Smith, PhD (both also of the F.M. Kirby Neurobiology Center at Children's Hospital Boston). Sun is currently testing some STAT activators.

"We are very excited by these findings," says He. "First, we are testing the combined effects of manipulating both the MTOR and JAK/STAT pathways, hoping to maximize axon growth. Second and more importantly, we are testing whether these manipulations improve functional recovery after optic nerve injury and spinal cord injury."
-end-
The study was funded by the Canadian Institutes of Health Research, the Craig Nelson Foundation, the National Institute of Neurological Disorders and Stroke, Wings for Life, and the Adelson Medical Research Foundation.

Citation: Smith et al., SOCS3 Deletion Promotes Optic Nerve Regeneration In Vivo, Neuron (2009), doi:10.1016/ j.neuron.2009.11.021

Children's Hospital Boston is home to the world's largest research enterprise based at a pediatric medical center, where its discoveries have benefited both children and adults since 1869. More than 500 scientists, including eight members of the National Academy of Sciences, 13 members of the Institute of Medicine and 12 members of the Howard Hughes Medical Institute comprise Children's research community. Founded as a 20-bed hospital for children, Children's Hospital Boston today is a 396-bed comprehensive center for pediatric and adolescent health care grounded in the values of excellence in patient care and sensitivity to the complex needs and diversity of children and families. Children's also is the primary pediatric teaching affiliate of Harvard Medical School. For more information about the hospital and its research visit: www.childrenshospital.org/newsroom.

Boston Children's Hospital

Related Spinal Cord Injury Articles from Brightsurf:

Stem cells can help repair spinal cord after injury
Spinal cord injury often leads to permanent functional impairment. In a new study published in the journal Science researchers at Karolinska Institutet in Sweden show that it is possible to stimulate stem cells in the mouse spinal cord to form large amounts of new oligodendrocytes, cells that are essential to the ability of neurons to transmit signals, and thus to help repair the spinal cord after injury.

Spinal cord injury increases risk for mental health disorders
A new study finds adults with traumatic spinal cord injury are at an increased risk of developing mental health disorders and secondary chronic diseases compared to adults without the condition.

Co-delivery of IL-10 and NT-3 to enhance spinal cord injury repair
Spinal cord injury (SCI) creates a complex microenvironment that is not conducive to repair; growth factors are in short supply, whereas factors that inhibit regeneration are plentiful.

IU scientists study link between energy levels, spinal cord injury
A team of researchers from Indiana University School of Medicine, in collaboration with the National Institute of Neurological Disorders and Stroke, have investigated how boosting energy levels within damaged nerve fibers or axons may represent a novel therapeutic direction for axonal regeneration and functional recovery.

UBCO professor simplifies exercise advice for spinal cord injury
Professor Kathleen Martin Ginis says a major barrier to physical activity for people with a spinal cord injury is a lack of knowledge or resources about the amount and type of activity needed to achieve health and fitness benefits.

Robotic trunk support assists those with spinal cord injury
A Columbia Engineering team has invented a robotic device -- the Trunk-Support Trainer (TruST) -- that can be used to assist and train people with spinal cord injuries (SCIs) to sit more stably by improving their trunk control, and thus gain an expanded active sitting workspace without falling over or using their hands to balance.

Does frailty affect outcomes after traumatic spinal cord injury?
A new study has shown that frailty is an important predictor of worse outcome after traumatic spinal cord injury in patients less than 75 years of age.

Sleep and sleepiness 'a huge problem' for people with spinal cord injury
A new study led by a University of Calgary researcher at the Cumming School of Medicine (CSM) finds that fatigue and sleep may need more attention in order to prevent issues like stroke after spinal cord injury.

From spinal cord injury to recovery
Spinal cord injury disconnects communication between the brain and the spinal cord, disrupting control over part of the body.

Transplanting adult spinal cord tissues: A new strategy of repair spinal cord injury
Spinal cord injury repair is one of the most challenging medical problems, and no effective therapeutic methods has been developed.

Read More: Spinal Cord Injury News and Spinal Cord Injury Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.