Tropical forests affected by habitat fragmentation store less biomass and carbon dioxide

December 09, 2009

São Paulo/ Leipzig. Deforestation in tropical rain forests could have an even greater impact on climate change than has previously been thought. The combined biomass of a large number of small forest fragments left over after habitat fragmentation can be up to 40 per cent less than in a continuous natural forest of the same overall size. This is the conclusion reached by German and Brazilian researchers who used a simulation model on data from the Atlantic Forest, a coastal rain forest in the state of São Paulo, Brazil, around 88 per cent of which has already been cleared. The remaining forest fragments are smaller, so the ratio between area and edge is less favourable. The reason for the reduction in biomass is the higher mortality rate of trees at the edges of forest fragments, according to the results published by researchers from the Helmholtz Centre for Environmental Research and the University of São Paulo in Ecological Modelling. This reduces the number of big old trees, which contain a disproportionately high amount of biomass.

Altered wind conditions and light climate lead to a general change in the microclimate at the forest edges. Big old trees are particularly vulnerable to these factors. With the help of FORMIND, a forest simulation software developed at the UFZ, the researchers modelled different sizes of forest patches left over after landscape fragmentation. The smaller a patch of forest is, the worse is the ratio between edge and area. Simulation results suggest that a natural tropical forest of our study area contained approximately 250 tonnes of aboveground biomass per hectare, a forest fragment measuring 100 hectares has around 228 tonnes of biomass per hectare, while a patch of rain forest measuring one hectare has only 140 tonnes of biomass per hectare. In other words, the biomass in the forest remnants in this study fell by as much as 40 per cent. "This finding is of great significance for the function of rain forests as a biomass store. It is important to be clear about the fact that we are losing more than just the deforested areas. Even the remaining forest is thinned out as a result. It is a mistake to think only in terms of total area. We have to start thinking in terms of the spatial configuration of the remaining forest fragments as well," says Dr Jürgen Groeneveld of the UFZ, explaining the significance of the study for climate policy. As well as the biomass yield per hectare, these fragmentation-related spatial (edge) effects also have impacts on climate balance and biodiversity, i.e. on several dimensions of sustainability.

The simulation integrated results from other researchers who are conducting unique long-term experiments on fragmentation in Amazonas. However, a large number of questions remain unanswered: Are the edges stable? Can the forest regenerate or does the degradation continue inwards? The researchers therefore view the figures as a preliminary, cautious estimate. "But if it is confirmed, it is a really fundamental finding," adds Dr Sandro Pütz of the UFZ. "Forest fragments cannot perform in the same way as continuous forests." The researchers therefore intend to investigate the long-term effects over the coming years to find out how the rain forest remnants develop in the long term. The results of this study will also have fundamental consequences for forest conservation, at least in terms of the carbon balance: "In any case, in terms of carbon storage, it is better to protect 100 continuous hectares than to protect 100 one-hectare patches," says Jürgen Groeneveld.

The data used in the model come from the tropical coastal rain forest in the state of São Paulo, Brazil. The Atlantic Forest was severely deforested in the second half of the 19th century for construction timber, charcoal and grazing and arable land. Although only around an eighth of the original forest area remains, these remnants are still regarded as international biodiversity hot spots, since they are home to an as yet not fully recorded, but impressive number of endangered animal and plant species that are not found anywhere else. Since 2003, Brazilian and German researchers have therefore been investigating the long-term effects of landscape fragmentation on habitats in the Atlantic Forest, which used to stretch along the whole of Brazil's east coast and is today one of the most endangered rain forests in the world.

The new findings from the ecological modelling experts led by Andreas Huth and Klaus Henle are also relevant for negotiations at the UN climate conference in Copenhagen. Under the heading REDD (Reducing Emissions from Deforestation and Degradation), the conference will be discussing a mechanism for including the forests in climate protection. Forests bind carbon dioxide. Deforestation or degradation of forests leads to a further release or less fixing of carbon dioxide per unit area, thereby increasing the greenhouse effect. Around 20 per cent of total global CO2 emissions comes from the destruction of forests.
-end-
With its expertise, the UFZ plays a part in researching the consequences of climate change and in developing adaptation strategies. You can find more on this in the special issue of the UFZ newsletter entitled "On the case of climate change" at http://www.ufz.de/index.php?en=10690 .

Publications:
J. Groeneveld, L.F. Alves, L.C. Bernacci, E.L.M. Catharino, C. Knogge, J.P. Metzger, S. Pütz, A. Huth (2009): The impact of fragmentation and density regulation on forest succession in the Atlantic rain forest. Ecol.Modell. 220 (19), 2450-2459
http://dx.doi.org/10.1016/j.ecolmodel.2009.06.015

M.C. Ribeiro, J.P. Metzger, A.C. Martensen, F.J. Ponzoni and M. M. Hirota (2009): The Brazilian Atlantic Forest: How much is left, and how is the remaining forest distributed? Implications for conservation. Biol. Conserv. 142, 1141-1153
http://dx.doi.org/10.1016/j.biocon.2009.02.021

More information:
Dr. Jürgen Groeneveld/ Dr. Christoph Knogge/ Dr. Sandro Pütz / Dr. habil. Andreas Huth
Helmholtz Centre for Environmental Research (UFZ)
Phone: +49-341-235-3213, -1706, 1719
http://www.ufz.de/index.php?en=3830
http://www.ufz.de/index.php?en=3879
http://www.ufz.de/index.php?en=12785
http://www.ufz.de/index.php?en=3983
and
Dr. Jean Paul Walter Metzger
University of São Paulo, Instituto Biociencias, São Paulo, Brazil
Phone: +55 11 3818.7564
http://lattes.cnpq.br/3873580432710177
http://ecologia.ib.usp.br/pos/index.php?option=com_content&view=article&id=6&Itemid=8
or
Tilo Arnhold (UFZ press officer)
Phone: +49-341-235-1269
Email: presse@ufz.de

Related links:
Biodiversity: Biodiversity's bright spot. Nature 462, 266-269 (2009) http://www.nature.com/news/2009/091118/full/462266a.html
Research projekt Mata Atlantica: http://www.mata-atlantica.ufz.de/
FORMIND: an individual based forest model: http://www.ufz.de/index.php?de=3994

References:
Laurance WF et al. (2000): Conservation: Rainforest fragmentation kills big trees. Nature 404, 836. doi:10.1038/35009032
Köhler P et al. (2003): Simulating the Long-term Response of Tropical Wet Forests to Fragmentation. Ecosystems (2003) 6: 114. DOI: 10.1007/s10021-002-0121-9

At the Helmholtz Centre for Environmental Research (UFZ) scientists research the causes and consequences of far-reaching environmental changes. They study water resources, biological diversity, the consequences of climate change and adaptation possibilities, environmental and biotechnologies, bio energy, the behaviour of chemicals in the environment and their effect on health, as well as modelling and social science issues. Their guiding research principle is supporting the sustainable use of natural resources and helping to secure these basic requirements of life over the long term under the influence of global change. The UFZ employs 930 people at its sites in Leipzig, Halle and Magdeburg. It is funded by the German government and by the states of Saxony and Saxony-Anhalt.

The Helmholtz Association helps solve major, pressing challenges facing society, science and the economy with top scientific achievements in six research areas: Energy, Earth and Environment, Health, Key Technologies, Structure of Matter, Transport and Space. With 28,000 employees in 16 research centres and an annual budget of around EUR 2.8 billion, the Helmholtz Association is Germany's largest scientific organisation. Its work follows in the tradition of the great natural scientist Hermann von Helmholtz (1821-1894).

Helmholtz Association

Related Climate Change Articles from Brightsurf:

Are climate scientists being too cautious when linking extreme weather to climate change?
Climate science has focused on avoiding false alarms when linking extreme events to climate change.

Mysterious climate change
New research findings underline the crucial role that sea ice throughout the Southern Ocean played for atmospheric CO2 in times of rapid climate change in the past.

Mapping the path of climate change
Predicting a major transition, such as climate change, is extremely difficult, but the probabilistic framework developed by the authors is the first step in identifying the path between a shift in two environmental states.

Small change for climate change: Time to increase research funding to save the world
A new study shows that there is a huge disproportion in the level of funding for social science research into the greatest challenge in combating global warming -- how to get individuals and societies to overcome ingrained human habits to make the changes necessary to mitigate climate change.

Sub-national 'climate clubs' could offer key to combating climate change
'Climate clubs' offering membership for sub-national states, in addition to just countries, could speed up progress towards a globally harmonized climate change policy, which in turn offers a way to achieve stronger climate policies in all countries.

Review of Chinese atmospheric science research over the past 70 years: Climate and climate change
Over the past 70 years since the foundation of the People's Republic of China, Chinese scientists have made great contributions to various fields in the research of atmospheric sciences, which attracted worldwide attention.

A CERN for climate change
In a Perspective article appearing in this week's Proceedings of the National Academy of Sciences, Tim Palmer (Oxford University), and Bjorn Stevens (Max Planck Society), critically reflect on the present state of Earth system modelling.

Fairy-wrens change breeding habits to cope with climate change
Warmer temperatures linked to climate change are having a big impact on the breeding habits of one of Australia's most recognisable bird species, according to researchers at The Australian National University (ANU).

Believing in climate change doesn't mean you are preparing for climate change, study finds
Notre Dame researchers found that although coastal homeowners may perceive a worsening of climate change-related hazards, these attitudes are largely unrelated to a homeowner's expectations of actual home damage.

Older forests resist change -- climate change, that is
Older forests in eastern North America are less vulnerable to climate change than younger forests, particularly for carbon storage, timber production, and biodiversity, new research finds.

Read More: Climate Change News and Climate Change Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.