Technique turns computer chip defects into an advantage

December 09, 2010

COLUMBUS, OHIO - Physicists at Ohio State University have discovered that tiny defects inside a computer chip can be used to tune the properties of key atoms in the chip.

The technique, which they describe in the journal Science, involves rearranging the holes left by missing atoms to tune the properties of dopants - the chemical impurities that give the semiconductors in computer chips their special properties.

Though the technique is currently limited to the laboratory, it could prove valuable to industry in the future, as the continued miniaturization of cell phone and computer chips makes the performance of individual atoms in a semiconductor more important.

"The effect we discovered is probably already going on inside the devices we use every day - it's just not being controlled," said Jay Gupta, assistant professor of physics at Ohio State and principal investigator on the project. "Once industry takes this effect into account, our discovery could not only enable future computers with faster speeds, but could also enable new paradigms for computing - based, for example, on quantum mechanics."

The initial discovery happened in the summer of 2008 as then-graduate student Donghun Lee was carefully measuring how the properties of dopant atoms depended on the arrangement of other nearby atoms. Lee and Gupta were peering at the common chip material gallium arsenide using a scanning tunneling microscope (STM), a type of electron microscope that can image surfaces with atomic resolution and position single atoms using a strong electric field.

Researchers commonly nudge atoms with an STM's electric field to rearrange them. In the case of these chip materials, the rearrangement process was like playing a sliding tile puzzle, Gupta explained; they rearranged the vacancies - empty holes, considered defects - in the material.

For example, they found that an arsenic vacancy on the surface of the material - like the missing tile in a puzzle - could be effectively moved by nudging an arsenic atom into a different nearby hole, thus resulting in a new hole where the arsenic atom used to be.

The hole left by the arsenic atom has its own electric field, and the researchers studied the influence of this field on nearby dopants - in this case, manganese atoms. They noticed that the dopant's energy level dropped when the hole was moved nearby, and increased when it was moved away.

Dopants are important in semiconductor devices such as computer chips because they enable very sensitive control over the current flow, depending on temperature and applied voltage. The dopant's energy is the key parameter that determines this ability.

Following the initial discovery, Gupta says it took over a year of additional experiments to understand the effect.

He explained the gist: "A dopant's ability to donate an electron or take it away depends on its binding energy, and by creating a vacancy near the manganese, we were tuning its binding energy. You could say we made the manganese act like a different atom, even though it was physically the same."

While chip makers aren't likely to employ STMs in their production lines anytime soon, Gupta believes that they could take advantage of the discovery in a practical way - by manipulating tiny electric fields across the metal electrodes that already exist on top of chips.

Manufacturers may be interested in this technique for not only improving current chip technologies in the short term, but also for developing new chip designs in the long term.

Today, a single chip may contain only a few dozen dopant atoms that are critical to its performance. As chips get smaller, the performance of every atom will count even more, and techniques such as Gupta's that can control individual dopant atoms could become very important.

In the future, a computer's logic controls and memory could both be integrated on a single chip, if semiconductor materials could be made magnetic at room temperature and above; those technologies are still under development. Computers powered by such chips would theoretically use less power, and never need rebooting.

Manganese-doped gallium arsenide is a prototypical magnetic semiconductor, which is why Gupta and Lee are now exploring how they might control the magnetic interaction between two or more manganese atoms using their discovery.
This research was funded by the Arnold and Mabel Beckman Foundation and the Center for Emergent Materials at Ohio State University, a National Science Foundation Materials Research Science and Engineering Center.

Ohio State University

Related Semiconductor Articles from Brightsurf:

Blue phosphorus: How a semiconductor becomes a metal
Blue phosphorus, an atomically thin synthetic semiconductor, becomes metallic as soon as it is converted into a double layer.

A new method to measure optical absorption in semiconductor crystals
Tohoku University researchers have revealed more details about omnidirectional photoluminescence (ODPL) spectroscopy - a method for probing semiconducting crystals with light to detect defects and impurities.

Medical robotic hand? Rubbery semiconductor makes it possible
A medical robotic hand could allow doctors to more accurately diagnose and treat people from halfway around the world, but currently available technologies aren't good enough to match the in-person experience.

Laser allows solid-state refrigeration of a semiconductor material
A team from the University of Washington used an infrared laser to cool a solid semiconductor by at least 20 degrees C, or 36 F, below room temperature, as they report in a paper published June 23 in Nature Communications.

Scientists create smallest semiconductor laser
An international team of researchers announced the development of the world's most compact semiconductor laser that works in the visible range at room temperature.

Clemson researcher's novel MOF is potential next-gen semiconductor
Clemson professor Sourav Saha demonstrated a novel double-helical metal organic framework architecture in a partially oxidized form that conducts electricity, potentially making it a next-generation semiconductor.

A gold butterfly can make its own semiconductor skin
A nanoscale gold butterfly provides a more precise route for growing/synthesizing nanosized semiconductors that can be used in nano-lasers and other applications.

Scientists pioneer new generation of semiconductor neutron detector
In a new study, scientists have developed a new type of semiconductor neutron detector that boosts detection rates by reducing the number of steps involved in neutron capture and transduction.

Scientists see defects in potential new semiconductor
A research team has reported seeing, for the first time, atomic scale defects that dictate the properties of a new and powerful semiconductor.

Bending an organic semiconductor can boost electrical flow
Slightly bending semiconductors made of organic materials can roughly double the speed of electricity flowing through them and could benefit next-generation electronics such as sensors and solar cells, according to Rutgers-led research.

Read More: Semiconductor News and Semiconductor Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to