A new kind of blast-resistant glass

December 09, 2010

Whether in a hurricane, tornado, or bomb attack, a leading cause of injury and death is often fast-flying shards of glass. Explosions and high winds can cause windows in buildings to shatter-spewing jagged pieces of glass in every direction.

A Pentagon report on the 1996 Khobar Towers bombing in Saudi Arabia, for example, noted:

Two of the 19 deceased had injuries know to be caused by glass fragments that were severe enough to cause death even without other contributing forces. Of the remaining 17 deceased, 10 had glass injuries that were significant and which may have caused death even without blunt force trauma. Thus, for 12 of 19 deaths, glass fragmentation was a significant factor. More than 90% of the people injured suffered laceration injuries, many of which were significant.

With an international research grant from the Department of Homeland Security's Science and Technology Directorate (S&T), a team of engineers from the University of Missouri and the University of Sydney in Australia is working to develop a blast-resistant glass that is lighter, thinner, and colorless, yet tough enough to withstand the force of an explosion, earthquake, or hurricanes winds.

Installing blast-resistant glass in buildings that are potential targets of attacks or in regions prone to severe weather can save lives. But current blast-resistant glass technology-the kind that protects the windows of key federal buildings, the president's limo, and the Popemobile -is thicker than a 300-page novel-so thick it cannot be placed in a regular window frame. This makes it very difficult-and expensive-to replace standard glass windows in present structures.

Unlike today's blast-resistant windows which are made of pure polymer layers, this new design is a plastic composite that has an interlayer of polymer reinforced with glass fibers-and it's only a quarter-inch thick.

The project team recently subjected their new glass pane to a small explosion. "The results were fantastic," exclaimed Sanjeev Khanna, the project's principal investigator and an associate professor of mechanical engineering at Missouri. "While the discharge left the pane cracked, the front surface remained completely intact."

The secret to the design's success is long glass fibers in the form of a woven cloth soaked with liquid plastic and bonded with adhesive. The pane is a layer of glass-reinforced clear plastic between two slim sheets of glass. Even the glue that holds it all together is clear. Think of it as a sandwich: the slim sheets of glass are the two slices of break; the liquid plastic and long glass fibers make up the crunchy peanut butter in the middle.

The glass fibers are typically 15 to 25 micrometers in diameter, about half the thickness of a typical human hair. The small size results in fewer defects and a decreased chance of cracking. The strong glass fibers also provide a significant reinforcing effect to the polymer matrix used to bind the fibers together. The more fibers used, the stronger the glass reinforcement. And while traditional blast-proof glass usually has a greenish ting, special engineering renders the polymer resin transparent to visible light.

Engineers expect the new design will be comparable in cost to current blast-proof glass panes, but lighter in weight. At only a quarter-inch thick, this newly engineered composite would slip into standard commercial window frames, making it much more practical and cost-efficient to install.

"Designing an affordable, easy-to-install blast-resistant window could encourage widespread use in civilian structures, thereby protecting the lives of occupants against multiple threats and hazards," notes John Fortune, manager of the project for the Infrastructure and Geophysical Division at S&T.

To date, the glass has been tested with small-scale prototypes. "In future tests, the size of the glass panels will be increased by two to four times to determine the effect of size on blast resistance," said Khanna.

The goal is to create blast-resistant panes as large as 48 by 66 inches-the standard General Services Administration window size for qualification blast testing-that can still be cost-effective. While dependent on results from upcoming tests, Khanna hopes this glass could become commercially available in three to four years.
-end-


US Department of Homeland Security - Science and Technology

Related Glass Articles from Brightsurf:

Glass tables can cause life-threatening injuries
Faulty glass in tables can cause life-threatening injuries, according to a Rutgers study, which provides evidence that stricter federal regulations are needed to protect consumers.

The nature of glass-forming liquids is more clear
Researchers from The University of Tokyo have found that attractive and repulsive interactions between particles are both essential to form structural order that controls the dynamics of glass-forming liquids.

Experimental study of how 'metallic glass' forms challenges paradigm in glass research
Unlike in a crystal, the atoms in a metallic glass are not ordered when the liquid solidifies.

On-demand glass is right around the corner
A research group coordinated by physicists of the University of Trento was able to probe internal stress in colloidal glasses, a crucial step to control the mechanical properties of glasses.

Glass from a 3D printer
ETH researchers used a 3D printing process to produce complex and highly porous glass objects.

Making glass more clear
Northwestern University researchers have developed an algorithm that makes it possible to design glassy materials with dynamic properties and predict their continually changing behaviors.

Researchers use 3D printer to print glass
For the first time, researchers have successfully 3D printed chalcogenide glass, a unique material used to make optical components that operate at mid-infrared wavelengths.

New family of glass good for lenses
A new composition of germanosilicate glass created by adding zinc oxide has properties good for lens applications, according to Penn State researchers.

In-depth insights into glass corrosion
Silicate glass has many applications, including the use as a nuclear waste form to immobilize radioactive elements from spent fuel.

New research questions the 'Glass Cliff' and corroborates the persistent 'Glass Ceiling'
Are women more likely to be appointed to leadership positions in crisis situations when companies are struggling with declining profits?

Read More: Glass News and Glass Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.