Bioengineers develop bacterial strain to increase ethanol biofuel production

December 09, 2010

Georgia, US - A team of Bioengineers in the United States have modified a strain of bacteria to increase its ability to produce ethanol. The research, published in Biotechnology and Bioengineering, reveals how adaptation and metabolic engineering can be combined for strain improvement, a positive development for the biofuel industry.

The team focused their research on Zymomonas mobilis, a bacterium noted for its bio-ethanol producing potential. However, the team believed that ethanol production could be increased through improvement of xylose fermentation.

"Zymomonas mobilis is a superb ethanol producer with productivity exceeding yeast strains by several fold," said lead author Rachel Chen from the Georgia Institute of Technology. "In this study we sought to improve ethanol production by enhancing the ability of Z. mobilis to use and ferment xylose. Fermenting xylose at high concentration could in turn increase ethanol concentration, resulting in much improved productivity."

The team found that by metabolically altering the strain, sugar fermentation time was reduced from over 110 hours to about 35 hours. This improvement in fermentation allowed the strain to ferment higher concentrations of xylose.

"This demonstrated increase in fermentation and xylose utilization enabled us to produce ethanol to a concentration of 9% (w/v), the highest ever shown for this organism in mixed sugar fermentation," said Chen.

This research also investigated the underlying mechanism for the improvement. Interestingly, by adapting a strain in a high concentration of xylose, significant alterations of metabolism occurred.

One noticeable change was reduced levels of xylitol, a byproduct of xylose fermentation which can inhibit the strain's xylose metabolism. In addition, the first step of xylose metabolism, believed to be the rate-limiting step, was accelerated 4-8 times in the adapted strain, with the net effect of channeling xylose to ethanol instead of xylitol.

"This research illustrates the power of adaptation in strain improvement," concluded Chen. "This confirms that xylitol metabolism is the key to efficient use of xylose in this bacterium, which in turn can be vital for producing ethanol. This shows that adaptation is not only useful in improving strains, but is equally useful for pinpointing key bottlenecks in metabolically engineered strains."
-end-


Wiley

Related Ethanol Articles from Brightsurf:

Spraying ethanol to nanofiber masks makes them reusable
A joint research team from POSTECH and Japan's Shinshu University evaluates the filtration efficiency of nanofiber and melt-blown filters when cleaned with ethanol.

Anaerobically disinfect soil to increase phosphorus using diluted ethanol
Anaerobic disinfection of soil is an effective method to kill unwanted bacteria, parasites and weeds without using chemical pesticides.

Fractionation processes can improve profitability of ethanol production
The US is the world's largest producer of bioethanol as renewable liquid fuel, with more than 200 commercial plants processing over 16 billion gallons per year.

Ethanol fuels large-scale expansion of Brazil's farming land
A University of Queensland-led study has revealed that future demand for ethanol biofuel could potentially expand sugarcane farming land in Brazil by 5 million hectares by 2030.

Measuring ethanol's deadly twin
ETH Zurich researchers have developed an inexpensive, handheld measuring device that can distinguish between methanol and potable alcohol.

Modified enzyme can increase second-generation ethanol production
Using a protein produced by a fungus that lives in the Amazon, Brazilian researchers developed a molecule capable of increasing glucose release from biomass for fermentation.

Scientists develop a chemocatalytic approach for one-pot reaction of cellulosic ethanol
Scientists at the Dalian Institute of Chemical Physics (DICP) of the Chinese Academy of Sciences have developed a chemocatalytic approach to convert cellulose into ethanol in a one-pot process by using a multifunctional Mo/Pt/WOx catalyst.

New core-shell catalyst for ethanol fuel cells
Scientists at Brookhaven Lab and the University of Arkansas have developed a highly efficient catalyst for extracting electrical energy from ethanol, an easy-to-store liquid fuel that can be generated from renewable resources.

Yeast makes ethanol to prevent metabolic overload
Why do some yeast cells produce ethanol? Scientists have wondered about this apparent waste of resources for decades.

Corncob ethanol may help cut China's greenhouse gas emissions
A new Biofuels, Bioproducts and Biorefining study has found that using ethanol from corncobs for energy production may help reduce greenhouse gas emissions in China, if used instead of starch-based ethanol.

Read More: Ethanol News and Ethanol Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.