Hidden details revealed in nearby starburst galaxy

December 09, 2013

Using the new, high-frequency capabilities of the National Science Foundation's Robert C. Byrd Green Bank Telescope (GBT), astronomers have captured never-before-seen details of the nearby starburst galaxy M82. These new data highlight streamers of material fleeing the disk of the galaxy as well as concentrations of dense molecular gas surrounding pockets of intense star formation.

M82, which is located approximately 12 million light-years away in the constellation Ursa Major, is a classic example of a starburst galaxy -- one that is producing new stars tens- to hundreds-of-times faster than our own Milky Way. Its relatively nearby location made it an ideal target for the GBT's newly equipped "W-Band" receiver, which is capable of detecting the millimeter wavelength light that is emitted by molecular gas. This new capability makes the GBT the world's largest single-dish, millimeter-wave telescope.

"With this new vision, we were able to look at M82 to explore how the distribution of molecular gas in the galaxy corresponded to areas of intense star formation," said Amanda Kepley, a post-doctoral fellow at the National Radio Astronomy Observatory (NRAO) in Green Bank, West Virginia, and lead author on a paper accepted for publication in the Astrophysical Journal Letters. "Having this new capability may help us understand why stars form where they do."

Astronomers recognize that dense molecular gas goes hand-in-hand with areas of star formation, but the connection is poorly understood and this relationship may be different in different types of galaxies. By creating wide-angle maps of the gas in galaxies, astronomers hope to better understand this complex interplay.

To date, however, these kinds of observations have not been easy since molecules that are used to map the distribution of dense gas, like HCN (hydrogen cyanide) and HCO+ (formylium), shine feebly in millimeter light. With its new W-Band receiver, the GBT was able to make highly sensitive, wide-angle images of these gases in and around M82.

"The GBT data clearly show billowing concentrations of dense molecular gas huddled around areas that are undergoing bursts of intense star formation," said Kepley. "They also reveal giant outflows of ionized gas fleeing the disk of the galaxy. These outflows are driven by star formation deep within the galaxy."

This capability will enable astronomers to quickly survey entire galaxies and different parts within galaxies. Such surveys would complement higher resolution observations with new Atacama Large Millimeter/submillimeter Array (ALMA) telescope in Chile.

The 100-meter GBT is located in the National Radio Quiet Zone and the West Virginia Radio Astronomy Zone, which protect the incredibly sensitive telescope from unwanted radio interference.
-end-
The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.

National Radio Astronomy Observatory

Related Star Formation Articles from Brightsurf:

Low-metallicity globular star cluster challenges formation models
On the outskirts of the nearby Andromeda Galaxy, researchers have unexpectedly discovered a globular cluster (GC) - a massive congregation of relic stars - with a very low abundance of chemical elements heavier than hydrogen and helium (known as its metallicity), according to a new study.

Astronomers turn up the heavy metal to shed light on star formation
Astronomers from The University of Western Australia's node of the International Centre for Radio Astronomy Research (ICRAR) have developed a new way to study star formation in galaxies from the dawn of time to today.

New observations of black hole devouring a star reveal rapid disk formation
When a star passes too close to a supermassive black hole, tidal forces tear it apart, producing a bright flare of radiation as material from the star falls into the black hole.

How galaxies die: New insights into the quenching of star formation
Astronomers studying galaxy evolution have long struggled to understand what causes star formation to shut down in massive galaxies.

The cosmic commute towards star and planet formation
Interconnected gas flows reveal how star-forming gas is assembled in galaxies.

Star formation project maps nearby interstellar clouds
Astronomers have captured new, detailed maps of three nearby interstellar gas clouds containing regions of ongoing high-mass star formation.

Scientists discover pulsating remains of a star in an eclipsing double star system
Scientists from the University of Sheffield have discovered a pulsating ancient star in a double star system, which will allow them to access important information on the history of how stars like our Sun evolve and eventually die.

Distant milky way-like galaxies reveal star formation history of the universe
Thousands of galaxies are visible in this radio image of an area in the Southern Sky, made with the MeerKAT telescope.

Cascades of gas around young star indicate early stages of planet formation
What does a gestating baby planet look like? New research in Nature by a team including Carnegie's Jaehan Bae investigated the effects of three planets in the process of forming around a young star, revealing the source of their atmospheres.

Massive exoplanet orbiting tiny star challenges planet formation theory
Astronomers have discovered a giant Jupiter-like exoplanet in an unlikely location -- orbiting a small red dwarf star.

Read More: Star Formation News and Star Formation Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.