SwRI scientists publish first radiation measurements from the surface of Mars

December 09, 2013

In the first 300 days of the Mars Science Laboratory's surface mission, the Curiosity rover cruised around the planet's Gale Crater, collecting soil samples and investigating rock structures while the onboard Radiation Assessment Detector made detailed measurements of the radiation environment on the surface of Mars.

"Our measurements provide crucial information for human missions to Mars," said Dr. Don Hassler, a Southwest Research Institute program director and RAD principal investigator. Hassler is the lead author of "Mars' Surface Radiation Environment Measured with the Mars Science Laboratory's Curiosity Rover," scheduled for publication in the journal Science online on December 9, 2013. "We're continuing to monitor the radiation environment, and observing the effects of major solar storms on the surface and at different times in the solar cycle will give additional important data. Our measurements also tie into Curiosity's investigations about habitability. The radiation sources that are of concern for human health also affect microbial survival as well as the preservation of organic chemicals."

Two forms of radiation pose potential health risks to astronauts: a chronic low dose of galactic cosmic rays (GCRs) and the possibility of short-term exposures to the solar energetic particles (SEPs) associated with solar flares and coronal mass ejections. The radiation on Mars is much harsher than on Earth for two reasons: Mars lacks a global magnetic field and the Martian atmosphere is much thinner than Earth's, providing little shielding to the surface.

This environmental factor poses a challenge for future human exploration of Mars and is also important in understanding both geological and potential biological evolution on Mars. Both GCRs and SEPs interact with the atmosphere and, if energetic enough, penetrate into the Martian soil, or regolith, where they produce secondary particles that contribute to the complex radiation environment on the Martian surface, which is unlike anything on Earth.

"The RAD surface radiation data show an average GCR dose equivalent rate of 0.67 millisieverts per day from August 2012 to June 2013 on the Martian surface," said Hassler. Radiation dose is measured in units of sievert (Sv) or millisievert (1/1000 Sv). "In comparison, RAD data show an average GCR dose equivalent rate of 1.8 millisieverts per day on the journey to Mars, when RAD measured the radiation inside the spaceship."

According to RAD data, most mission radiation exposure will be during outbound and return travel, when astronauts will be exposed to the radiation environment in interplanetary space, shielded only by the spacecraft itself. The total dose during just the transit phases of a Mars mission would be approximately 0.66 Sv for a round trip with current propulsion systems and during similar solar activity. A 500-day mission on the surface would bring the total exposure to around 1 Sv.

Long-term population studies have shown that exposure to radiation increases a person's lifetime cancer risk; exposure to a dose of 1 Sv is associated with a five percent increase in fatal cancer risk. Although NASA has generally established a three percent increased risk of fatal cancer as an acceptable career limit for astronauts in low earth orbit, it does not currently have a limit for deep space missions, and is working with the National Academies Institute of Medicine to determine appropriate limits for deep space missions, such as a mission to Mars in the 2030s.

SwRI, together with Christian Albrechts University in Kiel, Germany, built RAD with funding from the NASA Human Exploration and Operations Mission Directorate and Germany's national aerospace research center, Deutsches Zentrum für Luft- und Raumfahrt.

NASA's Jet Propulsion Laboratory, a division of the California Institute of Technology, Pasadena, Calif., manages the Mars Science Laboratory Project. The NASA Science Mission Directorate, at NASA Headquarters in Washington, manages the Mars Exploration Program.
"Mars' Surface Radiation Environment Measured with the Mars Science Laboratory's Curiosity Rover," published in Science online December 9, was written by Hassler, Cary Zeitlin of SwRI, Robert F. Wimmer-Schweingruber of Christian Albrechts University, Bent Ehresmann of SwRI, Scot Rafkin of SwRI, Jennifer L. Eigenbrode of NASA's Goddard Space Flight Center, David E. Brinza of JPL, Gerald Weigle of SwRI, Stephan Böttcher of Christian Albrechts University , Eckart Böhm of Christian Albrechts University, Soenke Burmeister of Christian Albrechts University, Jingnan Guo of Christian Albrechts University, Jan Köhler of Christian Albrechts University, Cesar Martin of Christian Albrechts University, Guenther Reitz of German Aerospace Center in Cologne, Germany, Francis A. Cucinotta of University of Nevada Las Vegas, Myung-Hee Kim of Universities Space Research Association, David Grinspoon of the Denver Museum of Nature and Science, Mark A. Bullock of SwRI, Arik Posner of NASA, Javier Gómez-Elvira of Centro de Astrobiología in Madrid, Spain, Ashwin Vasavada of JPL, and John P.Grotzinger of JPL, and the MSL Science Team.

Editors: Images to accompany this release is available from http://www.swri.org/press/2013/mars-measurements.htm.

Southwest Research Institute

Related Mars Articles from Brightsurf:

Water on ancient Mars
A meteorite that originated on Mars billions of years ago reveals details of ancient impact events on the red planet.

Surprise on Mars
NASA's InSight mission provides data from the surface of Mars.

Going nuclear on the moon and Mars
It might sound like science fiction, but scientists are preparing to build colonies on the moon and, eventually, Mars.

Mars: Where mud flows like lava
An international research team including recreated martian conditions in a low-pressure chamber to observe the flow of mud.

What's Mars made of?
Earth-based experiments on iron-sulfur alloys thought to comprise the core of Mars reveal details about the planet's seismic properties for the first time.

The seismicity of Mars
Fifteen months after the successful landing of the NASA InSight mission on Mars, first scientific analyses of ETH Zurich researchers and their partners reveal that the planet is seismically active.

Journey to the center of Mars
While InSight's seismometer has been patiently waiting for the next big marsquake to illuminate its interior and define its crust-mantle-core structure, two scientists, have built a new compositional model for Mars.

Getting mac and cheese to Mars
Washington State University scientists have developed a way to triple the shelf life of ready-to-eat macaroni and cheese, a development that could have benefits for everything from space travel to military use.

Life on Mars?
Researchers from Hungary have discovered embedded organic material in a Martian meteorite found in the late 1970s.

New evidence of deep groundwater on Mars
Researchers at the USC Arid Climate and Water Research Center (AWARE) have published a study that suggests deep groundwater could still be active on Mars and could originate surface streams in some near-equatorial areas on Mars.

Read More: Mars News and Mars Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.