Study finds rivers and streams release more greenhouse gas than all lakes

December 09, 2013

Rivers and streams release carbon dioxide at a rate five times greater than the world's lakes and reservoirs combined, contrary to common belief.

Research from the University of Waterloo was a key component of the international study, the findings of which appear in a recent issue of the journal Nature.

"Identifying the sources and amounts of carbon dioxide released from continental water sources has been a gap in understanding the carbon cycle. Our findings show just how much carbon dioxide inland waters release and identified that rivers and streams are the main source not lakes and reservoirs, as previously thought," said Professor Hans Dürr, research professor from the Faculty of Science at Waterloo.

A team of scientists from Belgium, Canada, Finland, France, Germany and the United States found that the rate at which lakes and reservoirs release carbon dioxide, or evasion rate, was lower than previous estimates. The rate from rivers and streams was three times higher, and even greater in smaller, fast-moving streams. The researchers found that the global carbon dioxide evasion rate from rivers and streams was 1.8 billion tons of carbon per year, compared with the 0.32 billion tons from lakes and reservoirs.

Professor Dürr, a co-author of the study, is a member of the Ecohydrology Research Group and Water Institute at Waterloo. His modelling tool called Coastal Segmentation and related Catchments, or COSCAT, was critical to putting the data into the global context.

"This study is an example of how new knowledge can be gained by bringing together different tools, techniques and ideas from hundreds of scientists to tackle a global issue," said Professor Dürr. "More integrated, international collaborations like this are needed."

The model is a global database of water bodies, or catchments, that connect to oceans. This land-ocean water connection is important for the movement of nutrients, greenhouse gases and metals in water systems.

This study provides new insights into how rivers and streams affect the global carbon cycle but emphasizes that additional research is needed to determine the carbon dioxide evasion rate for inland waters in the northern hemisphere.

Better estimates of carbon dioxide emissions are crucial because climate models project higher temperature increases than the global average in latitudes higher than 60 degrees north, yet many of the tools are derived from satellite products that do not yet exist for these latitudes.
-end-
This research was partly funded by Philippe Van Cappellen's Canada Excellence Research Chair in Ecohydrology.

University of Waterloo

Related Greenhouse Gases Articles from Brightsurf:

Mitigation of greenhouse gases in dairy cattle through genetic selection
Researchers in Spain propose mitigating methane production by dairy cattle through breeding.

Researchers control cattle microbiomes to reduce methane and greenhouse gases
''Now that we know we can influence the microbiome development, we can use this knowledge to modulate microbiome composition to lower the environmental impact of methane from cows by guiding them to our desired outcomes,'' Ben-Gurion University of the Negev Prof Mizrahi says.

A new look into the sources and impacts of greenhouse gases in China
Special issue of Advances in Atmospheric Sciences reveals new findings on China's GHG emissions and documents changes in local and regional environments.

New catalyst recycles greenhouse gases into fuel and hydrogen gas
Scientists have taken a major step toward a circular carbon economy by developing a long-lasting, economical catalyst that recycles greenhouse gases into ingredients that can be used in fuel, hydrogen gas, and other chemicals.

Making microbes that transform greenhouse gases
A new technique will help not only reduce greenhouse gas emissions, but the potential to reduce the overall dependence on petroleum.

Reducing greenhouse gases while balancing demand for meat
Humans' love for meat could be hurting the planet. Many of the steps involved in the meat supply chain result in greenhouse gas emissions.

White people's eating habits produce most greenhouse gases
White individuals disproportionately affect the environment through their eating habits by eating more foods that require more water and release more greenhouse gases through their production compared to foods black and Latinx individuals eat, according to a new report published in the Journal of Industrial Ecology.

Degrading plastics revealed as source of greenhouse gases
Researchers from the University of Hawai'i at Mānoa School of Ocean and Earth Science and Technology (SOEST) discovered that several greenhouse gases are emitted as common plastics degrade in the environment.

What natural greenhouse gases from wetlands and permafrosts mean for Paris Agreement goals
Global fossil fuel emissions would have to be reduced by as much as 20 percent more than previous estimates to achieve the Paris Agreement targets, because of natural greenhouse gas emissions from wetlands and permafrost, new research has found.

Greenhouse gases were the main driver of climate change in the deep past
Greenhouse gases were the main driver of climate throughout the warmest period of the past 66 million years, providing insight into the drivers behind long-term climate change.

Read More: Greenhouse Gases News and Greenhouse Gases Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.