Minerals from Papua New Guinea hold secret for recycling of noble gases

December 09, 2015

With every breath we take, we inhale not only oxygen, but also a mix of gases. This mixture includes carbon dioxide and nitrogen, but also a gas called argon. Neon, the gas that illuminates the signs of all-night diners, is also in the mix.

Our lungs recycle atmospheric argon and neon, in and out with every breath, but lungs are not alone in the recycling game. The Earth, itself, recycles atmospheric gases into the deep Earth and back to the surface again, but on a much longer time scale.

A new study by Suzanne Baldwin, the Michael G. and Susan T. Thonis Professor of Earth Sciences, and Jayeshkumar Das, a research associate of Earth sciences, brings insight to how atmospheric noble gases, in particular argon and neon, cycle from the surface to the Earth's mantle, and back to the surface again. Their study, 'Atmospheric Ar and Ne returned from mantle depths to the Earth's surface via forearc recycling,' is in the early edition of Proceedings of the National Academy of Sciences.

Argon and neon are noble gases that have been around since our solar system formed 4.6 billion years ago, from a vast cloud of gas and dust. The Earth formed from an accumulation of gas, dust, and small planetary objects. Because noble gases are chemically inert at conditions relevant to processes on Earth, they don't react with other elements.

"The fact that the noble gases don't react with other elements makes them excellent tracers for understanding the geochemical evolution of Earth and its atmosphere," Baldwin says.

Slightly different forms, or isotopes, of neon and argon exist in the Earth and atmosphere. "Measuring the isotopic composition and concentrations of argon and neon trapped in new minerals that have formed at mantle depths can help us to understand where these noble gases originated," Baldwin says. "When the minerals crystallized in the mantle, they trapped atoms of argon and neon within them."

The Earth, itself, has many layers. The outermost layer is the crust, which, along with the uppermost mantle beneath it, comprises the lithospheric plates. These plates move slowly, relative to one another, and, at convergent plate boundaries, one plate can be pushed underneath (i.e., subducted) the other. Over long periods of time (think millions of years), the crust is subducted deep into the mantle. While in the mantle, the minerals change their compositions and structure, and later can be exhumed to the surface with those new minerals formed during their time in the Earth's mantle.

Baldwin's team discovered an area in Papua New Guinea that had been through just such a subduction and exhumation cycle. They determined that the rocks of eastern Papua New Guinea were derived from the Australian lithospheric plate. They documented that some of the minerals, now found at the surface, formed at ultra-high pressure, approximately 8 million years ago, at depths greater than 90 kilometers, or roughly the distance from New York City to Philadelphia.

As it turns out, Baldwin and her team discovered the youngest examples of exhumed ultra-high pressure rocks of their kind.

By analyzing the composition and concentrations of argon and neon isotopes trapped within the minerals collected from modern-day Papua New Guinea, Baldwin and Das identified the source of the mineral-bound gases. "We documented that atmospheric argon and neon were available at mantle depths when minerals crystallized deep in the Earth," Baldwin says.

She explains that the presence of atmospheric argon and neon trapped in these minerals indicates that the atmospheric gases were subducted into the mantle and available to be entrapped in minerals crystallizing at ultra-high pressures. What's more, when the minerals return to the surface in the forearcs of subduction zones, they can break down over millions of years, releasing gases back to atmosphere once again.

"We were expecting mantle argon and neon to be trapped in the minerals formed at ultra-high pressure conditions," Das says.

Adds Baldwin: "But we found that atmospheric argon and neon was, in fact, trapped in these minerals."

Syracuse University

Related Mantle Articles from Brightsurf:

Distinct slab interfaces found within mantle transition zone
Prof. CHEN Qifu's group from the Institute of Geology and Geophysics, Chinese Academy of Sciences (IGGCAS) and their collaborators observed two distinct seismic discontinuities within the mantle transition zone (~410 km to 660 km) beneath the western Pacific.

FSU geologists publish new findings on carbonate melts in Earth's mantle
Geologists from Florida State University's Department of Earth, Ocean and Atmospheric Science have discovered how carbon-rich molten rock in the Earth's upper mantle might affect the movement of seismic waves.

Is the Earth's transition zone deforming like the upper mantle?
In a recently published paper in Earth and Planetary Science Letters, researchers from the Geodynamics Research Center, Ehime University and the University of Lille combine numerical modeling of dislocation glide and results from diffusion experiments to revisit the rheology of wadsleyite, ringwoodite and majorite garnet under geological strain rates across the transition zone of the Earth's mantle based on theoretical plasticity modeling.

Simulations reveal how saltwater behaves in Earth's mantle
Giulia Galli's complex computer simulations reveal how saltwater behaves in the Earth's mantle, affecting everything from magma production to the carbon cycle.

Remixed mantle suggests early start of plate tectonics
New Curtin University research on the remixing of Earth's stratified deep interior suggests that global plate tectonic processes, which played a pivotal role in the existence of life on Earth, started to operate at least 3.2 billion years ago.

Volcanic activity and changes in Earth's mantle were key to rise of atmospheric oxygen
Evidence from rocks billions of years old suggest that volcanoes played a key role in the rise of oxygen in the atmosphere of the early Earth.

The lower mantle can be oxidized in the presence of water
In regions at depths greater than 1900 kilometers, scientists found active interactions between water and mantle rocks, which are oxidizing Earth's mantle.

Quantum mechanical simulations of Earth's lower mantle minerals
The theoretical mineral physics group of Ehime University led by Dr.

Heat transport property at the lowermost part of the Earth's mantle
Lattice thermal conductivities of MgSiO3 bridgmanite and postperovskite (PPv) phases under the Earth's deepest mantle conditions were determined by quantum mechanical computer simulations.

Viscosity measurements offer new insights into the earth's mantle
An international research group with Dr. Longjian Xie from the Bavarian Research Institute of Experimental Geochemistry & Geophysics (BGI) of the University of Bayreuth has succeeded for the first time in measuring the viscosity that molten solids exhibit under the pressure and temperature conditions found in the lower earth mantle.

Read More: Mantle News and Mantle Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.