Nav: Home

Using 'big data' to fight flu

December 09, 2015

Flu epidemics occur almost every year. Sometimes, novel virus strains can even spread into global pandemics. In recent years, influenza A viruses (IAV) have been discovered that are resistant to the drugs available to treat flu, which can result in patients not responding to the medication.

The flu is triggered by infections with influenza viruses, which multiply heavily in the respiratory tract. In order to replicate within the cells of the respiratory tract, the viruses rely on host molecules. In recent years, there have thus been attempts to identify and block key host molecules for this process in order to stop the virus in its tracks.

Inhibition of host proteins curbs viral growth

An international study, in which the University of Zurich is involved, also pursues this approach. The research teams from Switzerland, Germany and the USA analyzed datasets from independent publications on IAV host molecules. These studies focus on the totality of the genes ('GenOMICs') and proteins ('ProteOMICs') required for the virus and generate a vast quantity of data. Thanks to the comprehensive analysis of these 'OMIC' databases, 20 previously unknown host molecules that promote the growth of influenza A viruses have been discovered.

"These unchangeable host proteins are vital for the replication of the viruses," explains Professor Silke Stertz from the Institute of Medical Virology at the University of Zurich. "We can now use these to stop the virus from spreading further." One of these host proteins is UBR4, which the virus needs to transport viral proteins to the cell membrane and construct new particles. This takes place as follows: The influenza A virus invades the host cell. The viral components are then carried to the cell surface, where they form new viruses. Consequently, as many as 20,000 new influenza viruses can develop from one, single infected host cell.

The study reveals that blocking UBR4 inhibits the production of new virus particles in infected cells. In mice, for instance, the IAV replication could be weakened and the progress of the disease slowed. The study therefore provides evidence that blocking host molecules is feasible as a therapeutic strategy for the treatment of influenza.

Public web portal supports drug development

The research team created a simplified, user-friendly web portal on influenza and host interaction. The site is also accessible to other researchers, enables individual requests and provides analysis tools to trace host proteins that are probably involved in the flu infection. As a result, the data published may help develop the next generation of influenza medication.

"We expect the approach described in this study and the use of 'big data' to bridge the gap between biomedical research and therapeutic development, and facilitate fresh insights into previously unanswered medical questions," says co-author Sumit Chanda from Sanford Burnham Prebys Medical Discovery Institute (SBP) in California.
-end-


University of Zurich

Related Influenza Articles:

How proteins help influenza A bind and slice its way to cells
Researchers have provided new insight on how two proteins help influenza A virus particles fight their way to human cells.
Eating elderberries can help minimize influenza symptoms
Conducted by Professor Fariba Deghani, Dr. Golnoosh Torabian and Dr.
Mechanism to form influenza A virus discovered
A new study by Maria João Amorim's team, from the Gulbenkian Institute of Science, now reveals where the genomes of the influenza A virus are assembled inside infected cells.
Bat influenza viruses could infect humans
Bats don't only carry the deadly Ebola virus, but are also a reservoir for a new type of influenza virus.
New VaxArray publication on influenza neuraminidase quantification
InDevR Inc. announced publication of 'A Neuraminidase Potency Assay for Quantitative Assessment of Neuraminidase in Influenza Vaccines' in npj Vaccines.
Fighting mutant influenza
Another flu season is here, which means another chance for viruses to mutate.
Influenza vaccine delays are a problem for pediatricians
Uptake of influenza vaccine among children is low compared to other childhood vaccines, and missed opportunities for vaccination play an important role in this low uptake.
For a better influenza vaccine, focus on the neglected 'N'
In the April 5, 2018, issue of the journal Cell, researchers push for greater emphasis on the neglected viral-surface influenza protein neuraminidase.
Previous influenza virus exposures enhance susceptibility in another influenza pandemic
New data analysis suggests that people born at the time of the 1957 H2N2 or Asian Flu pandemic were at a higher risk of dying during the 2009 H1N1 Swine Flu pandemic as well as the resurgent H1N1 outbreak in 2013-2014.
Annual influenza vaccination does not prevent natural immunity
Earlier studies have suggested that having repeated annual influenza vaccination can prevent natural immunity to the virus, and potentially increase the susceptibility to influenza illness in the event of a pandemic, or when the vaccine does not 'match' the virus circulating in the community.
More Influenza News and Influenza Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#538 Nobels and Astrophysics
This week we start with this year's physics Nobel Prize awarded to Jim Peebles, Michel Mayor, and Didier Queloz and finish with a discussion of the Nobel Prizes as a way to award and highlight important science. Are they still relevant? When science breakthroughs are built on the backs of hundreds -- and sometimes thousands -- of people's hard work, how do you pick just three to highlight? Join host Rachelle Saunders and astrophysicist, author, and science communicator Ethan Siegel for their chat about astrophysics and Nobel Prizes.