Exploring the evolutionary history of the immune system

December 09, 2016

The enzyme known as ALOX15 plays a crucial role in the production of anti-inflammatory and pro-resolving lipid mediators. As mammals have evolved, this enzyme has undergone changes to both its structure and function. Researchers from Charité - Universitätsmedizin Berlin have found that human ALOX15 appears to have developed a much higher capacity to stimulate the production of these lipid mediators than the enzyme variant found in lower primates. This discovery might suggest that the enzyme's structure has evolved to enable it to better control inflammation and to speed up the healing process. Results from this study have been published in the current issue of the journal Proceedings of the National Academy of Sciences*.

Working under the leadership of Prof. Dr. Hartmut Kühn, Head of Charité's Lipoxygenase Research Laboratory, the researchers started by comparing the amino acid sequence of ALOX15 isoforms in different mammals. They found that, in lower mammals, the enzyme appeared to be structurally different from that found in higher primates such as chimpanzees, orangutans and humans. The researchers then expressed the different ALOX15 isoforms as recombinant proteins in bacteria and explored the impact of the structural differences on enzyme functionality. "This allowed us to conclude the functional alterations ALOX15 has experienced during late primate evolution. One major functional consequence of this developmental process is that the enzyme of higher primates exhibits an improved capacity for the production of lipoxins, a special type of anti-inflammatory and pro-resolving mediator" explains Hartmut Kühn.

Inflammation is the physiological manifestation of the body's immune response, a process that is of immense importance for the survival of all terrestrial living systems and their ability to respond to, and to deal with, their biotic and abiotic environment. Prof. Kühn adds: "Our results show that the functional characteristics of the ALOX15 enzyme have evolved to improve the body's control mechanisms of the inflammatory response, and thus to optimize the human immune systems."

Charité - Universitätsmedizin Berlin

Related Enzyme Articles from Brightsurf:

Repairing the photosynthetic enzyme Rubisco
Researchers at the Max Planck Institute of Biochemistry decipher the molecular mechanism of Rubisco Activase

Oldest enzyme in cellular respiration isolated
Researchers from Goethe University have found what is perhaps the oldest enzyme in cellular respiration.

UQ researchers solve a 50-year-old enzyme mystery
Advanced herbicides and treatments for infection may result from the unravelling of a 50-year-old mystery by University of Queensland researchers.

Overactive enzyme causes hereditary hypertension
After more than 40 years, several teams at the MDC and ECRC have now made a breakthrough discovery with the help of two animal models: they have proven that an altered gene encoding the enzyme PDE3A causes an inherited form of high blood pressure.

Triggered by light, a novel way to switch on an enzyme
In living cells, enzymes drive biochemical metabolic processes. It is this very ability which allows them to be used as catalysts in biotechnology, for example to create chemical products such as pharmaceutics.

A 'corset' for the enzyme structure
The structure of enzymes determines how they control vital processes such as digestion or immune response.

Could inhibiting the DPP4 enzyme help treat coronavirus?
Researchers and clinicians are scrambling to find ways to combat COVID-19, including new therapeutics and eventually a vaccine.

Bacterial enzyme could become a new target for antibiotics
Scientists discover the structure of an enzyme, found in the human gut, that breaks down a component of collagen.

Chemists create new artificial enzyme
Rajeev Prabhakar, a computational chemist at the University of Miami, and his collaborators at the University of Michigan have created a novel, synthetic, three-stranded molecule that functions just like a natural metalloenzyme, or an enzyme that contains metal ions.

First artificial enzyme created with two non-biological groups
Scientists at the University of Groningen turned a non-enzymatic protein into a new, artificial enzyme by adding two abiological catalytic components: an unnatural amino acid and a catalytic copper complex.

Read More: Enzyme News and Enzyme Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.