Nav: Home

Navigating navigating land and water

December 09, 2019

Centipedes not only walk on land but also swim in water.

Researchers at Tohoku University, Swiss Federal Institute of Technology in Lausanne, University of Ottawa, and Hokkaido University with the support of the Human Frontier Science Program have, for the first time, decoded the flexible motor control mechanism underlying amphibious locomotion, or the ability to walk on land and to swim in water, in centipedes.

Animals move adaptively in various environments by flexibly coordinating their body and limbs. In particular, amphibious animals, such as salamanders and certain fishes, possess outstanding adaptability: they can move between qualitatively different substrates, i.e., land and water, by flexibly changing their body coordination patterns in real time. The essential mechanisms underlying how amphibious animals coordinate their body and appendages during adaptive locomotion have long been elusive.

To address this problem, researchers led by Professor Akio Ishiguro of the Research Institute of Electrical Communication at Tohoku University, focused on a specie of centipede, named Scolopendra subspinipes mutilans. This centipede walks on land by coordinating its many legs, but when put in water, it folds its legs and swims by bending the body trunk similar to an eel. The homogeneous and segmented body structure of the centipede facilitates the visualization of behavioral changes as it crosses between terrestrial and aquatic environments, making it an excellent animal model.

Researchers observed intact and nerve transected animals transitioning between walking and swimming and hypothesized that interactions between the central nervous system, the peripheral nervous system, the body, and the environment can explain gait transitions. In particular, they hypothesized that walking or swimming signals generated in the brain are sent posteriorly via distributed neural networks belonging to the central nervous system and located along the body; these brain signals, can be overridden by sensory signals felt by the peripheral nervous system of the legs when they touch the ground during walking. The researchers described this multiple-signal mechanism mathematically, and reproduced the behavior of centipedes in different situations through computer simulations.

The researchers hope that this finding provides insights into the essential mechanism underlying adaptive and versatile locomotion of animals. It will also help develop robots that can move on various environments by flexibly changing body coordination patterns.
-end-


Tohoku University

Related Walking Articles:

These feet were made for walking
Many of us take our feet for granted, but they have a challenging job in the biomechanics department.
Walking sharks discovered in the tropics
Four new species of tropical sharks that use their fins to walk are causing a stir in waters off northern Australia and New Guinea.
Micro implants could restore standing and walking
Researchers at the University of Alberta are focused on restoring lower-body function after severe spinal injuries using a tiny spinal implant.
Walking changes vision
When people walk around, they process visual information differently than at rest: the peripheral visual field shows enhanced processing.
Virtual walking system for re-experiencing the journey of another person
Virtual-reality researchers have developed a virtual-walking system that records a person's walking and re-plays it with vision and foot vibrations.
A large study indicates how cities can promote walking for travel
Coinciding with the European Mobility Week, a study performed in seven European cities focuses on walking for travel, a strategy to increase physical activity in cities.
Robotic cane shown to improve stability in walking
By adding electronics and computation technology to a simple cane that has been around since ancient times, Columbia Engineering researchers have transformed it into a 21st century robotic device that can provide light-touch assistance in walking to the aged and others with impaired mobility.
Water walking -- The new mode of rock skipping
Utah State University's Splash Lab not only reveals the physics of how elastic spheres interact with water, but it also lays the foundation for the future design of water-walking drones.
Just an hour of weekly walking staves off disability
Just one hour a week of brisk walking -- as if you are late to an appointment or trying to make a train -- staves off disability in older adults with arthritis pain, or aching or stiffness in a knee, hip, ankle or foot, reports a new Northwestern Medicine study.
Untangling the where and when of walking in the brain
How do our brains know when and where to place our feet in order to prevent us from tripping each time we find ourselves on a new terrain such as a icy path, or a sandy beach?
More Walking News and Walking Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.