Scientists find further evidence for a population of dark matter deficient dwarf galaxies

December 09, 2019

Researchers from the National Astronomical Observatories of the Chinese Academy of Science (NAOC), Peking University and Tsinghua University have found a special population of dwarf galaxies that could mainly consist baryons within radii of up to tens of thousands of light-years. This contrasts with the normal expectation that such regions should instead be dominated by dark matter.

This study may challenge the formation theory of dwarf galaxies in the framework of standard cosmology and may provide new clues to the nature of dark matter. The results were published in Nature Astronomy on Nov. 26, 2019.

In standard cosmology, the Universe is dominated by cold dark matter and dark energy, while baryons only occupy 4.6% by mass. Galaxies form and evolve in systems dominated by dark matter (Fig. 1). In high-mass systems, the baryonic fraction may reach the universal value, i.e., 4.6%. In low-mass systems, the baryonic fraction may be much lower due to their shallow gravitational potential.

The satellite dwarf galaxies in our Local Group are found to be dominated by dark matter down to radii of a few thousand light-years. However, statistical studies of the dynamics of dwarf galaxies beyond the Local Group previously had been hampered by the extreme faintness of such systems.

Multi-wavelength data have recently made such studies possible, however.

By taking advantage of the release of 40% of the data from the Arecibo Legacy Fast (ALFA) catalogue and the Seventh Data Release of the Sloan Digital Sky Survey, a research group led by Prof. GUO Qi from NAOC has found 19 dwarf galaxies that are dominated by baryons at radii far beyond their half-optical radii ( typically a few thousand light-years). Normally, the dark matter-to-baryon mass ratio reaches 10-1000 for "typical" dwarf galaxies. Notably, most of these baryon-dominated dwarf galaxies are isolated galaxies, free from the influence of nearby bright galaxies and high-density environments.

"This result is very hard to explain using the standard galaxy formation model in the context of concordance cosmology, and thus encourages people to revisit the nature of dark matter," said Prof. GUO.

Instead of the standard cold dark matter model, a warm dark matter model or fuzzy dark matter model might be more in line with the formation of this particular population of dwarf galaxies. Alternatively, some extreme astrophysical processes may also be responsible.

Further observations are required to understand the formation of these particular baryon-dominated dwarf galaxies.
-end-


Chinese Academy of Sciences Headquarters

Related Dark Matter Articles from Brightsurf:

Dark matter from the depths of the universe
Cataclysmic astrophysical events such as black hole mergers could release energy in unexpected forms.

Seeing dark matter in a new light
A small team of astronomers have found a new way to 'see' the elusive dark matter haloes that surround galaxies, with a new technique 10 times more precise than the previous-best method.

Holding up a mirror to a dark matter discrepancy
The universe's funhouse mirrors are revealing a difference between how dark matter behaves in theory and how it appears to act in reality.

Zooming in on dark matter
Cosmologists have zoomed in on the smallest clumps of dark matter in a virtual universe - which could help us to find the real thing in space.

Looking for dark matter with the universe's coldest material
A study in PRL reports on how researchers at ICFO have built a spinor BEC comagnetometer, an instrument for studying the axion, a hypothetical particle that may explain the mystery of dark matter.

Looking for dark matter
Dark matter is thought to exist as 'clumps' of tiny particles that pass through the earth, temporarily perturbing some fundamental constants.

New technique looks for dark matter traces in dark places
A new study by scientists at Lawrence Berkeley National Laboratory, UC Berkeley, and the University of Michigan -- published today in the journal Science - concludes that a possible dark matter-related explanation for a mysterious light signature in space is largely ruled out.

Researchers look for dark matter close to home
Eighty-five percent of the universe is composed of dark matter, but we don't know what, exactly, it is.

Galaxy formation simulated without dark matter
For the first time, researchers from the universities of Bonn and Strasbourg have simulated the formation of galaxies in a universe without dark matter.

Taking the temperature of dark matter
Warm, cold, just right? Physicists at UC Davis are using gravitational lensing to take the temperature of dark matter, the mysterious substance that makes up about a quarter of our universe.

Read More: Dark Matter News and Dark Matter Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.