Five-minute EEG recordings: a key to the symptoms of Parkinson's disease

December 09, 2020

What causes the characteristic slowing of movement in patients with Parkinson's disease? Electrical oscillations of nerve cells deep inside the brain and the cortex are pathologically coupled with each other. Researchers know this from recordings taken from the brains of Parkinson's patients during surgery to fit a brain pacemaker.

But is it possible to detect this coupling if the electrical nerve activity is only derived from the patient's scalp, by electroencephalogram (EEG)? Doctoral researcher Ruxue Gong investigated this with a team of scientists led by Professor Joseph Claßen, Director of the Department of Neurology at Leipzig University Hospital, and Professor Thomas Knösche from the MPI for Human Cognitive and Brain Sciences.

In the EEG measurements, which lasted just five minutes, the researchers really did find such couplings in Parkinson's patients. Compared to healthy subjects, these couplings are enhanced in brain regions that serve to control movement. The breaking of coupling between oscillations at different locations could be particularly important for therapeutic approaches to address Parkinson's symptoms. "Using external electrical or magnetic stimulation, we hope that in future it will be possible to correct the coupled electrical oscillations in Parkinson's patients without the need for surgery," said Claßen. "With our mathematical modelling, we want to find out what characteristics such novel therapies would need to ensure their success. These new findings may represent an important building block in this respect," said Knösche.

Moreover, pathological coupling was also detected in an individual area of the cerebral cortex which is only slightly involved in motor control. "Perhaps the cognitive disorders that exist in some Parkinson's patients have a common cause with motor disorders," said Claßen. Future studies will investigate this thesis further.
-end-
Original title of the publication in BRAIN: A Journal of Neurology:

"Spatiotemporal features of β-γ phase-amplitude coupling in Parkinson's disease derived from scalp EEG", doi.org/10.1093/brain/awaa400

Universität Leipzig

Related Brain Articles from Brightsurf:

Glioblastoma nanomedicine crosses into brain in mice, eradicates recurring brain cancer
A new synthetic protein nanoparticle capable of slipping past the nearly impermeable blood-brain barrier in mice could deliver cancer-killing drugs directly to malignant brain tumors, new research from the University of Michigan shows.

Children with asymptomatic brain bleeds as newborns show normal brain development at age 2
A study by UNC researchers finds that neurodevelopmental scores and gray matter volumes at age two years did not differ between children who had MRI-confirmed asymptomatic subdural hemorrhages when they were neonates, compared to children with no history of subdural hemorrhage.

New model of human brain 'conversations' could inform research on brain disease, cognition
A team of Indiana University neuroscientists has built a new model of human brain networks that sheds light on how the brain functions.

Human brain size gene triggers bigger brain in monkeys
Dresden and Japanese researchers show that a human-specific gene causes a larger neocortex in the common marmoset, a non-human primate.

Unique insight into development of the human brain: Model of the early embryonic brain
Stem cell researchers from the University of Copenhagen have designed a model of an early embryonic brain.

An optical brain-to-brain interface supports information exchange for locomotion control
Chinese researchers established an optical BtBI that supports rapid information transmission for precise locomotion control, thus providing a proof-of-principle demonstration of fast BtBI for real-time behavioral control.

Transplanting human nerve cells into a mouse brain reveals how they wire into brain circuits
A team of researchers led by Pierre Vanderhaeghen and Vincent Bonin (VIB-KU Leuven, Université libre de Bruxelles and NERF) showed how human nerve cells can develop at their own pace, and form highly precise connections with the surrounding mouse brain cells.

Brain scans reveal how the human brain compensates when one hemisphere is removed
Researchers studying six adults who had one of their brain hemispheres removed during childhood to reduce epileptic seizures found that the remaining half of the brain formed unusually strong connections between different functional brain networks, which potentially help the body to function as if the brain were intact.

Alcohol byproduct contributes to brain chemistry changes in specific brain regions
Study of mouse models provides clear implications for new targets to treat alcohol use disorder and fetal alcohol syndrome.

Scientists predict the areas of the brain to stimulate transitions between different brain states
Using a computer model of the brain, Gustavo Deco, director of the Center for Brain and Cognition, and Josephine Cruzat, a member of his team, together with a group of international collaborators, have developed an innovative method published in Proceedings of the National Academy of Sciences on Sept.

Read More: Brain News and Brain Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.