New and unexplored dimension in the study of protein-protein interactions

December 09, 2020

Many proteins are required to maintain the structure, and to preserve the genetic integrity, of DNA. Sliding clamps are proteins that increase the efficiency of DNA replication. Without these proteins, cells would not be able to carry out continuous DNA synthesis, and organisms, from bacteria to humans, would not survive.

Sliding clamps are ring-shaped proteins that encircle DNA and bind to the DNA polymerase, the enzyme that performs the actual DNA replication. They effectively organize and orient the DNA and its ancillary proteins so as to enable replication. Sliding clamps are oligomeric proteins; they are made up of more than one identical copy of individual proteins called monomers.

The bacterial E. coli clamp, called beta, is made up of two identical monomers. Human cells contain clamps called PCNA, which are made up of three identical monomers. Strong intermolecular forces between these identical monomers ensure that the rings are stable in solution and do not fall off the DNA during replication.

The self-assembly of the monomers of sliding clamps into a stable doughnut-shape ring is controlled by ionic and other intermolecular forces. It is known that assembly of these structures can be influenced by the presence of salts, but other forms of molecular control over this self-assembly are not well understood. In an effort to understand the molecular basis for clamp self-assembly, associate Professor Marcia Levitus from School of Molecular Sciences and co-workers have now found that these protein doughnuts assemble in previously-unknown ways when exposed to molecules that bacteria typically use to tolerate high levels of salt in the environment.

Specifically, potassium glutamate (KGlu) and glycine betaine are found to promote self-assembly of beta and PCNA clamps into structures containing many doughnuts stacked face-to-face. These structures resemble tubes of doughnuts, and are only observed in the presence of compounds that cells produce when they need to tolerate high salt concentrations in the growing medium.

Their research, which has just been published in the Biophysical Journal, is a result of a long-standing collaboration with Professor Linda Bloom who works in the department of biochemistry and molecular biology, University of Florida.

"In this study we examine non-Coulombic effects on the self-assembly properties of sliding clamps," explained Levitus. "We determined relative diffusion coefficients of two sliding clamps using fluorescence correlation spectroscopy. Although so far we worked with two sliding clamps, our results suggest that our findings are not specific to these proteins and may be generalizable to a wide range of protein-protein interactions." Levitus is also part of the Biodesign Center for Single Molecule Biophysics.

Cells accumulate glutamate and related molecules under stress, and so formation of high-order protein assemblies under these conditions has important biological implications. Specifically, this would represent a mechanism by which the presence of stressor compounds in the cell could control DNA replication.
Ian Gould contributed to this story

Arizona State University

Related DNA Articles from Brightsurf:

A new twist on DNA origami
A team* of scientists from ASU and Shanghai Jiao Tong University (SJTU) led by Hao Yan, ASU's Milton Glick Professor in the School of Molecular Sciences, and director of the ASU Biodesign Institute's Center for Molecular Design and Biomimetics, has just announced the creation of a new type of meta-DNA structures that will open up the fields of optoelectronics (including information storage and encryption) as well as synthetic biology.

Solving a DNA mystery
''A watched pot never boils,'' as the saying goes, but that was not the case for UC Santa Barbara researchers watching a ''pot'' of liquids formed from DNA.

Junk DNA might be really, really useful for biocomputing
When you don't understand how things work, it's not unusual to think of them as just plain old junk.

Designing DNA from scratch: Engineering the functions of micrometer-sized DNA droplets
Scientists at Tokyo Institute of Technology (Tokyo Tech) have constructed ''DNA droplets'' comprising designed DNA nanostructures.

Does DNA in the water tell us how many fish are there?
Researchers have developed a new non-invasive method to count individual fish by measuring the concentration of environmental DNA in the water, which could be applied for quantitative monitoring of aquatic ecosystems.

Zigzag DNA
How the cell organizes DNA into tightly packed chromosomes. Nature publication by Delft University of Technology and EMBL Heidelberg.

Scientists now know what DNA's chaperone looks like
Researchers have discovered the structure of the FACT protein -- a mysterious protein central to the functioning of DNA.

DNA is like everything else: it's not what you have, but how you use it
A new paradigm for reading out genetic information in DNA is described by Dr.

A new spin on DNA
For decades, researchers have chased ways to study biological machines.

From face to DNA: New method aims to improve match between DNA sample and face database
Predicting what someone's face looks like based on a DNA sample remains a hard nut to crack for science.

Read More: DNA News and DNA Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to