Chimp genome assembled

December 10, 2003

BETHESDA, Md., Dec. 10, 2003 - The National Human Genome Research Institute (NHGRI), one of the National Institutes of Health (NIH), today announced the first draft version of the genome sequence of the chimpanzee and its alignment with the human genome. All of the data have been deposited into free public databases and are now available for use by scientists around the world.

The sequence of the chimpanzee, Pan troglodytes, was assembled by NHGRI-funded teams led by Eric Lander, Ph.D., at The Eli & Edythe L. Broad Institute of the Massachusetts Institute of Technology and Harvard University, Cambridge, Mass.; and Richard K. Wilson, Ph.D., at the Genome Sequencing Center, Washington University School of Medicine, Saint Louis.

Researchers deposited the initial assembly, which is based on four-fold sequence coverage of the chimp genome, into the NIH-run, public database, GenBank, (www.ncbi.nih.gov/Genbank). In turn, Genbank will distribute the sequence data to the European Molecular Biology Laboratory's Nucleotide Sequence Database, EMBL-Bank (www.ebi.ac.uk/embl/index.html), and the DNA Data Bank of Japan, DDBJ (www.ddbj.nig.ac.jp).

To facilitate biomedical studies comparing regions of the chimp genome with similar regions of the human genome, the researchers also have aligned the draft version of the chimp sequence with the human sequence. Those alignments can be scanned using the University of California, Santa Cruz's Genome Browser, (http://genome.ucsc.edu/cgi-bin/hgGateway); the National Center for Biotechnology Information's Map Viewer, (www.ncbi.nlm.nih.gov/mapview); and the European Bioinformatics Institute's Ensembl system, (http://www.ensembl.org/).

An international team of scientists, led by researchers at the University of Washington in Seattle, Washington University and the Broad Institute (MIT/Harvard), is currently comparing the chimp and human genome sequences and plans to publish results of its analysis in the next several months.

Chimpanzees are the most closely related species to humans. Consequently, comparative analysis of the human and chimp genomes can reveal unique types of information impossible to obtain from comparing the human genome with the genomes of other animals. For more on the scientific rationale for sequencing the chimp genome, go to: www.genome.gov/Pages/Research/Sequencing/SeqProposals/ChimpGenome2.pdf. For more on comparative genomic analysis, go to: www.genome.gov/10005835.
-end-
NHGRI is one of 27 institutes and centers at NIH, an agency of the Department of Health and Human Services. The NHGRI Division of Extramural Research supports grants for research and for training and career development at sites nationwide. Information about NHGRI can be found at: www.genome.gov.

For additional information on the chimp genome assembly, contact:

National Human Genome Research Institute
Geoff Spencer
301-402-0911
spencerg@mail.nih.gov

The Eli & Edythe L. Broad Institute, MIT/Harvard
Lisa Marinelli
617-252-1967
marinelli@broad.mit.edu

Washington University School of Medicine
Joni Westerhouse
314-286-0120
westerhousej@wustl.edu

University of Washington
Walter Neary
206-685-3841
wneary@u.washington.edu

NIH/National Human Genome Research Institute

Related Genome Articles from Brightsurf:

Genome evolution goes digital
Dr. Alan Herbert from InsideOutBio describes ground-breaking research in a paper published online by Royal Society Open Science.

Breakthrough in genome visualization
Kadir Dede and Dr. Enno Ohlebusch at Ulm University in Germany have devised a method for constructing pan-genome subgraphs at different granularities without having to wait hours and days on end for the software to process the entire genome.

Sturgeon genome sequenced
Sturgeons lived on earth already 300 million years ago and yet their external appearance seems to have undergone very little change.

A sea monster's genome
The giant squid is an elusive giant, but its secrets are about to be revealed.

Deciphering the walnut genome
New research could provide a major boost to the state's growing $1.6 billion walnut industry by making it easier to breed walnut trees better equipped to combat the soil-borne pathogens that now plague many of California's 4,800 growers.

Illuminating the genome
Development of a new molecular visualisation method, RNA-guided endonuclease -- in situ labelling (RGEN-ISL) for the CRISPR/Cas9-mediated labelling of genomic sequences in nuclei and chromosomes.

A genome under influence
References form the basis of our comprehension of the world: they enable us to measure the height of our children or the efficiency of a drug.

How a virus destabilizes the genome
New insights into how Kaposi's sarcoma-associated herpesvirus (KSHV) induces genome instability and promotes cell proliferation could lead to the development of novel antiviral therapies for KSHV-associated cancers, according to a study published Sept.

Better genome editing
Reich Group researchers develop a more efficient and precise method of in-cell genome editing.

Unlocking the genome
A team led by Prof. Stein Aerts (VIB-KU Leuven) uncovers how access to relevant DNA regions is orchestrated in epithelial cells.

Read More: Genome News and Genome Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.