Pittsburgh-based team engineers muscle, bone cell differentiation with aid of ink-jet printer

December 10, 2006

PITTSBURGH -- A Pittsburgh-based research team has created and used an innovative ink-jet system to print "bio-ink" patterns that direct muscle-derived stem cells from adult mice to differentiate into both muscle cells and bone cells. The results, which could revolutionize the design of replacement body tissues, will be presented Sunday, Dec. 10 at the 46th annual meeting of the American Society for Cell Biology in San Diego by Julie (Jadlowiec) Phillippi, a Carnegie Mellon University post-doctoral research fellow supported by the Pittsburgh Tissue Engineering Initiative.

This report is the first describing a system that can pattern the formation of multiple cell types within the same vessel from a single population of adult stem cells. The new preclinical advance in the field of regenerative medicine could one day benefit millions of people whose tissues are damaged from a variety of conditions, including fatal genetic diseases like Duchenne Muscular Dystrophy (DMD), wear and tear associated with aging joints, accidental trauma, and joint deterioration due to autoimmune disorders.

The custom-built ink-jet printer, developed at Carnegie Mellon's Robotics Institute, can deposit and immobilize growth factors in virtually any design, pattern or concentration, laying down patterns on native extracellular matrix-coated slides (such as fibrin). These slides are then placed in culture dishes and topped with muscle-derived stem cells (MDSCs). Based on pattern, dose or factor printed by the ink-jet, the MDSCs can be directed to differentiate down various cell-fate differentiation pathways (e.g. bone- or muscle-like).

"Previously, researchers have been limited to directing stem cells to differentiate toward multiple lineages in separate culture vessels. This is not how the body works: the body is one vessel in which multiple tissues are patterned and formed. The ink-jet printing technology allows us to precisely engineer multiple unique microenvironments by patterning bio-inks that could promote differentiation towards multiple lineages simultaneously," explained Phil Campbell, research professor at Carnegie Mellon's Institute for Complex Engineered Systems.

"Controlling what types of cells differentiate from stem cells and gaining spatial control of stem cell differentiation are important capabilities if researchers are to engineer replacement tissues that might be used in treating disease, trauma or genetic abnormalities," said Lee Weiss, research professor at Carnegie Mellon's Robotics Institute.

"This system provides an unprecedented means to engineer replacement tissues derived from muscle stem cells," said Johnny Huard, professor of orthopedic surgery at the University of Pittsburgh School of Medicine and director of the Stem Cell Research Center at Children's Hospital of UPMC. Huard has long-standing research findings that show how muscle-derived stem cells (MDSCs) from mice can repair muscle in a model for Duchenne Muscular Dystrophy, improve cardiac function following heart failure, and heal large bone and articular cartilage defects.

Weiss and Campbell, along with graduate student Eric Miller, previously demonstrated the use of ink-jet printing to pattern growth factor "bio-inks" to control cell fates. For their current research, they teamed with Phillippi, Huard and biologists of the Stem Cell Research Center at Children's Hospital to gain experience in using growth factors to control differentiation in populations of MDSCs from mice.

The Carnegie Mellon scientists used computer-vision feedback to calibrate how bio-inks were jetted onto their targets with micrometer precision to facilitate subsequent image analysis. They stained the MDSC cultures for cell markers to confirm that muscle and bone-like lineages "lined-up" in register with engineered bio-ink patterns that were initially printed onto the slides with the ink-jet printer.

"Our findings showed that we successfully engineered MDSCs to become subpopulations of muscle or bone-like cells that were patterned using our bio-ink-jet system," said Phillippi. "This experiment represents a key first step in demonstrating the potential of this technology to learn more about not only the basic biology of how multiple cell types are patterned in the body during development, repair and regeneration, but also for translating adult stem cells into real therapies for patients in the future."

The team, along with Alan Waggoner, professor of biological sciences and director of Carnegie Mellon's Molecular Biosensor Imaging Center, is now developing novel biosensors and fluorescent-based techniques to visualize stem cell differentiation in response to the bio-ink patterns.

Because the ink-jet system employs such precision, it could be used one day to co-culture multiple MDSC lineages - including bone, muscle and other cell types - in complex, patterned configurations that could be incorporated directly into specific areas of the body in need of repair of multiple tissue types, according to the investigators.

The Pittsburgh team envisions the ink-jet technology as potentially useful for engineering stem cell-based therapies for repairing defects where multiple tissues are involved, such as joints where bone, tendon, cartilage and muscle interface. Patients afflicted with conditions like osteoarthritis might benefit from these therapies, which incorporate the needs of multiple tissues and may improve post-treatment clinical outcomes.

The long-term promise of this new technology could be the tailoring of tissue-engineered regenerative therapies. In preparation for preclinical studies, the Pittsburgh researchers are combining the versatile ink-jet system with advanced real-time live cell image analysis developed at the Robotics Institute and Molecular Biosensor and Imaging Center to further understand how stem cells differentiate into bone, muscle and other cell types.
-end-
For more information, visit www.ices.cmu.edu/, www.pitt.edu/~huardlab and www.mbic.cmu.edu/home.html.

Carnegie Mellon University

Related Stem Cells Articles from Brightsurf:

SUTD researchers create heart cells from stem cells using 3D printing
SUTD researchers 3D printed a micro-scaled physical device to demonstrate a new level of control in the directed differentiation of stem cells, enhancing the production of cardiomyocytes.

More selective elimination of leukemia stem cells and blood stem cells
Hematopoietic stem cells from a healthy donor can help patients suffering from acute leukemia.

Computer simulations visualize how DNA is recognized to convert cells into stem cells
Researchers of the Hubrecht Institute (KNAW - The Netherlands) and the Max Planck Institute in Münster (Germany) have revealed how an essential protein helps to activate genomic DNA during the conversion of regular adult human cells into stem cells.

First events in stem cells becoming specialized cells needed for organ development
Cell biologists at the University of Toronto shed light on the very first step stem cells go through to turn into the specialized cells that make up organs.

Surprising research result: All immature cells can develop into stem cells
New sensational study conducted at the University of Copenhagen disproves traditional knowledge of stem cell development.

The development of brain stem cells into new nerve cells and why this can lead to cancer
Stem cells are true Jacks-of-all-trades of our bodies, as they can turn into the many different cell types of all organs.

Healthy blood stem cells have as many DNA mutations as leukemic cells
Researchers from the Princess Máxima Center for Pediatric Oncology have shown that the number of mutations in healthy and leukemic blood stem cells does not differ.

New method grows brain cells from stem cells quickly and efficiently
Researchers at Lund University in Sweden have developed a faster method to generate functional brain cells, called astrocytes, from embryonic stem cells.

NUS researchers confine mature cells to turn them into stem cells
Recent research led by Professor G.V. Shivashankar of the Mechanobiology Institute at the National University of Singapore and the FIRC Institute of Molecular Oncology in Italy, has revealed that mature cells can be reprogrammed into re-deployable stem cells without direct genetic modification -- by confining them to a defined geometric space for an extended period of time.

Researchers develop a new method for turning skin cells into pluripotent stem cells
Researchers at the University of Helsinki, Finland, and Karolinska Institutet, Sweden, have for the first time succeeded in converting human skin cells into pluripotent stem cells by activating the cell's own genes.

Read More: Stem Cells News and Stem Cells Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.