Keeping at-risk cells from developing cancer

December 10, 2007

Researchers at Johns Hopkins have discovered that cancers arising from epigenetic changes - in this case the inappropriate activation of a normally silent gene - develop by becoming addicted to certain growth factors. Reporting online in next week's Early Edition of the Proceedings of the National Academies of Sciences, the team shows that blocking this "addiction" can greatly prevent cancer growth.

"If this is translatable to people, it could be really exciting," says Andrew Feinberg, M.D., professor of medicine, oncology and molecular biology and genetics and director of the Epigenetics Center at Hopkins. "It means we might be able to do something about at-risk cells before cancer develops, and treat these cells biochemically and specifically, rather than using current drugs that are nonspecific and kill everything in their path."

The gene for growth factor IGF-II (insulin-like growth factor two) is one of several in the human genome that is controlled by imprinting - where one of the two copies of the gene is turned off, depending on which parent it came from. Normally, the IGF-II gene from your father is turned on and the one from your mother is turned off. Loss of this imprinting causes the activation of the maternal copy, leading to activation of both copies of the IGF-II gene, which has been associated with a fivefold increased frequency of intestinal tumors in people.

The Hopkins team tested mouse cells with imprinting intact, which have only one copy of IGF-II activated, and compared them to cells that had lost imprinting and have both copies of IGF-II activated. They found that normally imprinted cells respond to normal doses of growth factor and recover within 90 minutes. However, cells that had lost imprinting were activated by the smallest doses and continued to stay activated for more than 120 minutes.

"It's like they were on a hair trigger, which was totally counterintuitive to what we might have predicted," says Andre Levchenko, Ph.D., an assistant professor of biomedical engineering at Hopkins and co-director of the study. "You would expect in cells that have lost imprinting, and therefore have twice the amount of gene product, that it would take higher doses to activate the cell. In fact, the cell becomes hypersensitized while having too much IGF-II around."

The researchers then wondered if blocking the cells' response to IGF-II could block cancer growth in animals. Mice that develop colon cancer were given a drug that specifically blocks a cell's ability to respond to IGF-II. These mice developed 70 percent fewer precancerous lesions than mice without treatment.

"Finding the molecular mechanism behind cancer development allowed us to use a specific drug to actually take care of these risky cells before the animal developed cancer," says Feinberg. "It's making us think about cancer prevention in a whole new way."
-end-
The research was funded by the National Institutes of Health and the Swedish Cancer Research Foundation.

Authors on the paper are Atsushi Kaneda, Chiaochun Wang, Raymond Cheong, Winston Timp, Patrick Onyango, Bo Wen, Christine Iacobuzio-Donahue, Andre Levchenko and Feinberg of Hopkins; Rolf Ohlsson of Uppsala University in Uppsala, Sweden; Rita Andraos and Mark Pearson of Novartis Institute of Biomedical Research in Basel, Switzerland; and Alexei Sharov, Dan Longo and Minoru Ko of the National Institute on Aging in Baltimore, Md.

On the Web:

http://www.hopkinsmedicine.org/ibbs/research/epigenetics/
http://www.pnas.org/

Johns Hopkins Medicine

Related Growth Factor Articles from Brightsurf:

New insights into colorectal cancer: Growth factor R-spondin suppresses tumor growth
R-spondin, which enhances the growth of healthy cells in the gut, suppresses the growth of intestinal adenoma cells, thus reducing the formation of intestinal tumors.

Temple scientists identify key factor regulating abnormal heart growth
In new work, researchers at the Lewis Katz School of Medicine at Temple University cast fresh light on a key molecular regulator in the heart known as FoxO1.

Acoustic growth factor patterning
For optimally engineered tissues, it is important that biological cues are delivered with appropriate timing and to specific locations.

Experimental growth factor shows promise for treating knee osteoarthritis
A new experimental growth factor therapy appears to prevent a worsening of osteoarthritis by increasing the thickness of cartilage in the knee joint and preventing further loss, according to results from an early clinical trial that were published today in the Journal of the American Medical Association.

HSS researchers identify factor essential for tendon growth
Insulin-like growth factor 1 (IGF1) is essential for allowing tendons to adapt to physical activity and grow properly, according to basic science research by investigators at Hospital for Special Surgery (HSS).

Scientists successfully obtain synthetic growth factor compatible to the native protein
In a recent study published in Scientific Reports, researchers at Kanazawa University show that an artificially synthesized molecule can exhibit compatible activities to natural molecules in its biological effectiveness.

Nerve growth factor: Early studies and recent clinical trials
NGF is the first discovered member of a family of neurotrophic factors, collectively indicated as neurotrophins, (which include brain-derived neurotrophic factor, neurotrophin-3 and neurotrophin 4/5).

Growth factor gradients in migration-permissive hydrogels for salivary gland assembly
At the 47th Annual Meeting of the American Association for Dental Research (AADR), held in conjunction with the 42nd Annual Meeting of the Canadian Association for Dental Research (CADR), Kelsea Marie Hubka, a Rice University graduate student and visiting student at University of Texas Health Science Center School of Dentistry, Houston, Texas, presented a poster titled 'Growth Factor Gradients in Migration-Permissive Hydrogels for Salivary Gland Assembly.'

Alleviating complications of babies born smaller: Is a growth factor injection the answer?
Researchers have found a new potential treatment that may alleviate complications of babies born smaller than they should be, also called fetal growth restriction, which refers to poor growth of the fetus in the mother's womb during pregnancy.

Tug of war between Parkinson's protein and growth factor
Alpha-synuclein, a sticky and sometimes toxic protein involved in Parkinson's disease, blocks signals from the growth factor BDNF, adding to evidence that alpha-synuclein is a pivot for brain cell damage.

Read More: Growth Factor News and Growth Factor Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.